

Since in 1969, Vainer Marchesini, founder and current Chairman and C.E.O. of the Group, manufactured his first Screw Conveyor the name WAM[®] has come to stand for innovation in Bulk Material Handling Technology and Equipment Supply.

ANIMAL FEED

PLASTICS

BUILDING MATERIALS

WAMGROUP*

IRON METALLURGY - FOUNDRY

FOODS

MINING

a partient

PHARMACEUTICALS

CERAMICS

NAMGROU

FACTS & FIGURES SUMMARY

20 MANUFACTURING & ASSEMBLY PLANTS WORLD WIDE

WAMGROUP® CURRENTLY PRESENT IN 85 COUNTRIES

► 50 SUBSIDIARIES AROUND THE WORLD

8 AMONGST FOREIGN SUBSIDIARIES INCLUDE PRODUCTION (ASSEMBLY LINES FOR MAJOR PRODUCTS)

 DEALERSHIP AGREEMENTS IN THOSE COUNTRIES WITHOUT A WAMGROUP[®] SUBSIDIARY

5 SENIOR DEALERS

WAMGROUP® Product Range

Level & Pressure Monitoring Silo Safety

Air Filtration

Pneumatic Conveying

Bulk Solids Flow Interception

Vibration Technology Aiding of Material Flow

Bulk Solids Discharging

Mixing – Conditioning Agglomerating – Granulating

Bulk Solids Feeding & Metering

Waste Water & Sludge Treatment

WAMGROUP® Brands

Bulk Solids Handling Equipment

Industrial Vibrators & Flow Aids

Mixing Technology

Silo Technology

Bulk Solids Handling Equipment

Bulk Solids Discharging Equipment

Mechanical Conveying Waste Water Treatment Hydroenergy Equipment

Helicoid Flighting Augers

Engineering Polymer Components

Waste Water Treatment Equipment

Solutions for Waste Water Treatment Plants

Solutions in Vibration Technology

Waste Water Treatment PLANT

Waste Water = water that has been used, as for washing, flushing, or in manufacturing processes, and so contains waste products.

Waste water also referred to as sewage.

Waste Water

SPECO' SAVI EQUIPMENT FOR:

- SOLID/LIQUID Separation
- GRIT Removal

GREASE Removal

• SLUDGE

Waste Water Treatment PLANT

Waste Water Treatment PLANT

Mechanical Preliminary Treatment

SOLID/LIQUID Separation

Mechanical Preliminary Treatment

Screw Screens **WASTEMASTER® GCP/GCE**

 $Q = 30 \sim 300 \ l/s \ (63 \sim 635 \ cfm)$

- Fine screening in channel application
- Automatic removal of the suspended solids from waste water
- Different flow rates and size of screenings to be removed

Waste Water Treatment (8100 - 8200)

WASTEMASTER[®] GCP/GCE

WASTEMASTER® GCP/GCE

Waste Water Treatment (8100 - 8200)

WASTEMASTER[®] GCP/GCE

WASTEMASTER[®] GCP/GCE

WASTEMASTER® GCP/GCE

Waste Water Treatment (8100 - 8200)

WASTEMASTER[®] GCP/GCE

Waste Water Treatment (8100 - 8200)

... in Technical Catalogue:

- Overall dimensions
- Extracting performance
- Feeding performance
- Motor information
- Gear reducer information

MAXIMUM RATES WITH JOHNSON SCREEN - MAX. FÖRDERMENGEN MIT JOHNSON-SIEBEN DEBIT MAXIMUM AVEC CRIBLE JOHNSON - PORTATE MASSIME CON VAGUO JOHNSON SCREENS WITH JOHNSON PROFILE - SIEBE MIT JOHNSON-PROFIL CRIBLE AVEC PROFIL JOHNSON - VAGLI CON PROFILI JOHNSON

Model - Modell Modèle - Modello GCP - GCE	JOHNSON SCREENS - JOHNSON-SIEBE CRIBLE JOHNSON - VAGLI JOHNSON			
	A= 0.5 mm (SPECIAL)	B=1 mm	C= 2 mm	
301	28	37	48	
401	53	69	91	
501	93	120	156	
601	135	176	229	
701	178	231	301	

Rate "Q" (I/sec.) - Fördermengen "Q" (I/sec) - Debit "Q" (litres/sec.) - Portate "Q" (litri/sec.)

MAXIMUM RATES WITH DRILLED PLATE SCREEN - MAX. FÖRDERMENGEN MIT LOCHBLECHSIEBEN Debit Maximum avec crible perce - portate Massime con Vaglio Forato

DRILLED PLATE SCREENS - LOCHBLECHSIEBE CRIBLE PERCES - VAGLIO FORATO

Model - <i>Modell</i> Modèle - <i>Modello</i> GCP - GCE	DRILLED PLATE SCREENS - LOCHBLECHSIEBE CRIBLE PERCES - VAGLIO FORATO			
	D= 3 mm	E= 5 mm	F= 6 mm	
301	40	50	45	
401	75	85	80	
501	130	145	137	
601	190	225	205	
701	250	300	280	

Rate "Q" (I/sec.) - F

SC

REE	Model - Modell - Modèle - Modello GCP - GCE	dm³/sec	
	301	0.18	
	401	0.18	
	501	0.18	
	601	0.27	
	701	0.27	

- Main information for **correct sizing:**
- Type and quantity of material to handle:
- e.g: suspended solids and removal of solids, inlet flow rate Screen basket mesh:
- e.g.: round perforation, wedge wire
- Compaction required?
- e.g.: optional built in compactors
- Flow rate, channel width, channel depth:
- e.g.: define size of GCP/GCE (300, 400, 500, 600, 700mm) Place of installaton:
- e.g.: existing channel or dedicated tank
- **Combination of materials**
- e.g.: 304/304 SS, 304 SS/mild steel, 316/316 SS, etc.

Mechanical Preliminary Treatment

Mechanical Preliminary Treatment

Drum Fine Screens

 $Q = 30 \sim 1550 \, l/s$

- Finest screening in channel application
- High capacity flow
- Different flow rates and size of screenings to be removed

How does it work?

As the drum rotates, a spray bar cleans the debris from the inside of the drum, depositing it into the auger trough. A nylon brush removes any additional material from the outside of the drum

Perforated plate from 1 to 6 mm

Wedge Wire from 5 to 10 mm

Mesh from .5 to 1 mm

Screen drum cleaning brush

Screen drum spray bars

Basket Support Rollers

Waste Water Treatment (8100 - 8200)

Main market needs:

- Automatic removal of suspended solids from waste water
- Robust and durable
- High flow rate and size of screenings to be removed
- Low maintenance

Main points:

- 40% volume reduction with built-in compactor (option)
- Heavy-duty shaftless screw conveyor
- Self-supporting turntable/wheel for drum and screw
- Specialised machine for both civil and industrial application

Waste Water Treatment (8100 - 8200)

L	ØI	ØG	F	D	C	В	A	Size
5,000	219	800	600	900	1,000	800	1,500	800
5,300	219	1,000	800	1,100	1,200	1,000	1,500	1000
5,600	323	1,200	1,000	1,300	1,400	1,200	1,500	1200
6,000	323	1,400	1,200	1,500	1,600	1,400	1,500	1400
6,200	323	1,600	1,300	1,700	1,800	1,600	1,500	1600
6,500	406	1,800	1,500	1,900	2,000	1,800	1,500	1800
7,000	406	2,000	1,700	2,100	2,200	2,000	1,500	2000

... in Tech-Info and drawings:

- Overall dimensions
- Extracting performance
- Feeding performance
- Motor information
- Gear reducer information

Size	Max flow rate* [l/s]	Installed power [kW]	Solid extraction [m ³ /h]
800	35 - 210	1.5	1
1000	60 - 230	1.5	1
1200	80 - 305	2.2	7
1400	120 - 530	2.2	7
1600	155 - 920	2.2	7
1800	240 - 1140	3.0	15
2000	300 - 1550	3.0	15

*Depending on the screen mesh

Main information for **correct sizing**:

- Type and quantity of material to handle:
- e.g.: suspended solids and removal of solids, inlet flow rate Screen basket mesh:
- e.g.: round perforation, wedge wire, bars
- Compaction required?
- e.g.: optional built-in compactor
- Flow rate, channel width, channel depth:
- e.g.: define size of FTR (800, 1000, 1200, 1400, 1600, 1800, 2000mm)
- Place of installaton:
- e.g.: existing channel or dedicated tank
- Combination of materials:
- e.g.: 304/304 SS, 304 SS/mild steel, 316/316 SS, etc.

Mechanical Preliminary Treatment

Mechanical Preliminary Treatment

Screw Screens WASTEMASTER® GCPC/GCEC

 $Q = 30 \sim 300 \ \text{l/s} (63 \sim 635 \ \text{cfm})$

- Fine screening in TANK application
- Automatic removal of the suspended solids from waste water
- Different flow rates and size of screenings to be removed

WASTEMASTER® GCPC/GCEC

Waste Water Treatment (8100 - 8200)

WASTEMASTER® GCPC/GCEC

State or other

In-Piping Screw Screen

WASTEMASTER® GCPC/GCEC

Main market needs:

- Automatic removal of suspended solids from waste water feeding pipe
- Robust and durable
- Different flow rates and size of screenings to be removed
- Low maintenance
- Main points:
- Completely bolted assemby; tank supplied with different side outlets
- 40% volume reduction with built-in compactor
- Heavy-duty shaftless screw conveyor
- Heavy resistant brush segments and bearing support for cleaning and protection of screen basket
- Specialised machine for both civil and industrial application

GCP/C 600

... in Technical Manual and drawings:

- Overall dimensions (drawings)
- Extracting performance
- Feeding performance
- Motor information
- Gear reducer information

Model - Modell Modèle - Modello	JOHNSON SCREENS - JOHNSON-SIEBE CRIBLE JOHNSON - VAGLI JOHNSON			
GCP/C	A= 0.5 mm (SPECIAL)	C=1 mm	D= 2 mm	
300	28	37	48	
400	53	69	90	
600	93	120	156	
600	135	176	229	
700	178	230	301	

Rata "O" (lloar) / Fördarmannan "O" / l/car) / Dahlt "O" / litrasioar) / Dortzta "O" / litri/car)

Model - Modell Modèle - Modello	DRILLE	D PLATE SCREENS - LOCHBLEO RIBLE PERCES - VAGLIO FORA	CHSIEBE TO
GCP/C	E= 3 mm	G= 6 mm	H= 7 mm
300	40	60	55
400	75	86	93
600	130	145	160
600	190	226	245
700	250	300	330

NOPENDENTEMENTE DALLA PORTATA '9' DI LIQUANI LA POTENZIALITA' DI TRASPORTO DEI SOLIDI E' LA SEGUENTE

BCP/C-DEC Mod Misani (CCP/C-SS Model CCP/C-SS Misanio (CCP/C-S)	en entre ent
306	12.16
400	0.10
506	0.18
206	0.23
706	0.33

L1 =	Minimum	level of	work /	Minimaler.	Betrieb	swasserstand
	Minimum	niveau	de trava	all / Minimo	livello.	di lavoro

- L2 = Max, level of work / Max, Betriebswasserstand Maximum niveau de travail / MAX livello dl lavoro
- L3 = Alarm level / Wasserstand-Alarm Niveau d'alerte / Livello di allarme
- L4 = Overflow / Übertauf Débordement / Troppopieno

Model / Modell / Modèle / Modello	Le	vel / Wassersta	nd / Niveau / Live	llo
	L1	L2	L3	L4
GCP/C 600	100	520	680	996

Main information for correct sizing:

Type of material to handle:

e.g.: suspended solids and removal of solids, inlet flow rate Compaction required?

e.g.: optional built-in compactor

Flow rate, outlet side:

e.g.: define size of GCPC (300, 400, 500, 600, 700mm) on the flow rate

Place of installaton:

e.g.: indoors or outdoors Combination of materials e.g.: 304/304 SS, 304 SS/mild steel, 316/316 SS, etc.

Mechanical Preliminary Treatment

Mechanical Preliminary Treatment

Vertical Screw Screens

 $Q = 36 \sim 70 \text{ l/s} (76 \sim 148 \text{ cfm})$

- Space-saving in PIT application
- High efficiency solid removal
- Use as protection for pumps

WASTEMASTER® GCV

Insulated discharge module

Inlet spout and split screen basket

Highly efficient outlet spout in plastic material

Washing tube

Waste Water Treatment (8100 - 8200)

Main market needs:

- Automatic removal of suspended solids from a pipe inside deep pit
- Robust and durable
- Different flow rates and size of screenings to be removed
- Low maintenance

Selling points:

- 40% volume reduction with built-in compactor
- Wide range of accessories
- Heavy-duty shaftless screw conveyor
- Heavy resistant brush segments and bearing support for cleaning and protection of the screen basket
- Specialised machine for both civil and industrial applications

Waste Water Treatment (8100 - 8200)

... in Technical Manual and drawings:

- Overall dimensions (drawings)
- Extracting performance
- Feeding performance
- Motor information
- Gear reducer information

	Model - <i>Modell</i> Modèle - <i>Modello</i>	Flow - Fördermenge - Débit - Portata [l/s] 3mm	Flow - Fördermenge - Débit - Portata [l/s] 6mm
Γ	GCV 300	36	47
Γ	GCV 500	70	90

Note: These values are are related to clean water. Anm.: Diese Werte beziehen sich auf Reinwasser. Remarque: Ces valeurs se réfèrent à de l'eau propre. Nota: questi valori si riferiscono ad acqua pulita.

Main information for correct sizing:

Type of material to handle:

e.g.: suspended solids and removal of solids, inlet flow rate Flow rate and pit depth:

e.g.: define size and length of GCV (200, 300, 500mm) Outlet side:

e.g.: define position of discharge point

Combination of materials:

e.g.: 304/304 SS, 304 SS/mild steel, 316/316 SS, etc.

Waste Water Treatment (8100 - 8200)

Mechanical Preliminary Treatment

Mechanical Preliminary Treatment

Multi-Rake Screen GVB-GVF-GVS

- Removal of solids in High channel depth
- Available for channels up to 2 m wide
- 800 units installed worldwide

How does it work?

Wastewater flows into the upstream side of the unit and debris is captured on the bars

The material is removed from the rakes by the wiper and discharged into a dumpster, conveyor or compactor

The chain-driven rakes clean the bars and transport the material to the discharge point

The three Multi-Rake models:

- GVB multirake Coarse Bar Screen >12mm 38 mm spacing
- GVF multirake Fine Bar Screen 6mm-10mm spacing

- GVS multirake perforated screen - 3mm-6mm perforations

Drive sprockets and wiper

Drive chain

Mechanical Preliminary Treatment

Mechanical Preliminary Treatment

Screw Compactors

CLE

- High Efficient de-watering
- Commonly known as "Duck Neck" compactor

Waste Water Treatment (8100 - 8200)

WASTECOM [™] CLE

Commonly known as "Duck Neck" compactor

Waste Water Treatment (8100 - 8200)

Main market needs:

- Reduction of screeningsvolume: > 50%
- Reduction of transportation/disposal costs
- Draining liquids to reduce odours

Main point:

- For Waste Water Treatment plants > 150,000 p.e. in general
- Screw compactor
- SINT[™] drainage module: zero clearance between trough and screw
- Jagged screw: high removal rate with difficult materials
- Specialised machine for civil applications
- Easy maintenance

Waste Water Treatment (8100 - 8200)

Туре	A	B	C	E	Ht	Hs	I	L	Lt	N	P	W	Ø IN	ØOUT
CLE 200	180	571	600	550	2,080	1,600	1,000-1,500	1,880	4,100-4,600	350	177	700-1,200	219	323
CLE 300	180	571	600	650	2,050	1,510	1,000-1,500	1,500	4,100-4,600	450	277	700-1,200	323	406
CLE 400	CLE 400 180 571 600 650 2,300 1,750 1,250-1,750 1,850 4,500-5,250 550 377 950-1,200 406 508								508					
or reference only: for detailed drawings please context the manufacturer Dimensions in m							ne in ma							

For reference only: for detailed drawings please contact the manufacturer

MODEL	Flow rate (m³/h)	installation power kW	Hopper capacity (1)		
CLE 200	1.5 - 2.0	1.5	70 ÷ 140		
CLE 300	2.5 - 3.0	2.2	100 ÷ 200		
CLE 400	4.0 - 4.5	3.0	200 ÷ 330		

... in Tech-Info and drawings:

- Overall dimensions
- Compacting performance
- Feeding performance
- Drive information

Main information for **correct sizing**:

- Type of material to handle:
- e.g.: screenings of other solids
- Organic matter removal is required?
- e.g.: if we should apply or not our machine Quantity
- e.g.: define screw size (200, 300, 400mm) How is the machine fed?
- e.g.: define hopper size or length of drainage module Place of installaton:
- e.g.: with or without hopper, possible requirement for a conveyor
- **Combination of materials**
- e.g.: 304/304 SS, 304 SS/mild steel, etc.

CPS

Screw Compactors with TRANSPORTATION

 $Q_{max.} = 12 \text{ m}^3/\text{h} (4.7 \text{ cfm})$

- Efficient de-watering
- Self-adjusting outlet plug diaphragm
- Modular design facilitates access and parts replacement

WASTECOM [™] CPS

Solution for Compaction of solids after Vertical Bar Screen

Main market needs:

- Reduction of volume of screenings
- Reduction of transportation/disposal costs
- Draining liquids to reduce odours

Main points:

- Shaftless screw conveyor
- SINT[™] drainage module
- SINT[™] diaphragm with variable resistance
- Specialised machine for civil and industrial application
- Easy maintenance

Turne	Trees	Т		L			0		v		_		LIM
type	ĸ	Min	Max	Min	Max	2	9	U U	•	2	0		KYY
CPS 200	490	1000	6000	2660	7660	530	640	610	320	485	230	5° - 25°	1.5
CPS 300	610	2000	8000	4090	12090	780	700	750	440	585	330	5° - 25°	2.2
CPS 400	790	2000	10000	4575	12575	1035	750	870	575	705	430	5° - 25°	4
-												dimensio	os in mm

Standard machine - Serienmäßige Maschine - Machine de série - Macchina di serie

Туре	Т
CPS 200	2000
CPS 300	3000
CPS 400	4000

dimensions in mm

PERFORMANCE - LEISTUNG - PERFORMANCES - PRESTAZIONI					
Turne	Throughput Rate - Durchsatzmenge - Débit - Portata				
туре	[l/s]	[m3/h]			
CPS 200	0.55	2			
CPS 300	1.39	5			
CPS 400	2.22	8			

... in technical manual:

- Overall dimensions
- Compacting performance
- Feeding performance
- Electric motor details
- Gear reducer details

Main information for **correct sizing**: Material to handle: e.g.: screenings, etc. define choice of bars or liner and type of screen mesh

Quantity:

- e.g.: define screw size (200, 300, 400mm) Length of installation:
- e.g.: define total length of the machine Combination of materials:
- e.g.: 304/304 SS, 304 SS/mild steel, etc.
- Angle and place of installation:
- e.g.: avoid risk of incorrect installation and claim

Mechanical Preliminary Treatment

Mechanical Preliminary Treatment

Grit Separators GRITSEP® DS

 $Q_{max.} = 36 \ l/s \ (76 \ cfm)$

- A CLASSIC !!!!
- Gravity Grit Classifier
- Shaftless Grit Classifier

GRITSEP ™ DS

Main market needs:

- 90% grit removal
- High dryness of materials extracted
- Easy interface with standard grit chambers

Main point:

- In general for all Waste Water Treatment plants
- Heavy-duty shaftless screw conveyor
- SS bars or plastic/metal liner for zero clearance between trough and screw
- Low RPM for high removal rate
- Specialised machine for civil applications
- Easy maintenance

... in Technical Manual:

- Overall dimensions
- Extraction performance
- Feeding performance
- Motor information
- Gear reducer information

DS Model <i>Modell DS</i> Modèle DS Modello DS	Flow Rate Fördermenge Débit Portata	Potential quantity of sand <i>Potentielle Sandmenge</i> Potentialité transport de sable <i>Potenzialità trasporto sabbie</i>			
Modeno Do	(l/sec)	(m³/h)	(dm³/sec)		
DS400	5.00	0.22	0.06		
DS1000	8.33	0.29	0.08		
DS2000	22.2	0.29	0.08		
DS3400	27.8	0.29	0.08		
DS4000	36.0	1.30	0.36		

- Main information for a **correct sizing**: **Type of material to handle:** e.g.: grit
- Organic matter removal required?
- e.g.: should apply our machine or not?
- Flow rate and amount of grit to remove:
- e.g.: define the size of the DS (400, 1000, 2000, 3400, 4000)
- Place of installaton:
- e.g.: to a grit chamber
- **Combination of materials**
- e.g.: 304/304 SS, 304 SS/mild steel, etc.

Continuous Grit Separators GRITSEP ™ FGC

- Fluid Dynamic grit classifier
- Special fluid dynamic separation surface
- Shaftless screw

Main market needs:

- 90% grit removal
- High dryness of extracted materials
- Easy interface with standard grit chambers

Main points:

- Higher sedimentation rate and removal: 95%
- System self-adjusting to different flow rates
- Heavy-duty shaftless screw conveyor
- SS bars or fixed pipe for high extraction efficiency
- Specialised machine for civil applications
- Easy maintenance

Overall Dimensions 🔻

Maximum	Flow Rate	Average Sand Extraction
[m³/h]	[dm³/s]	[dm³/s]
018	5	
030	8	
054	15	0.18
090	25	
130	36	

... in Tech-Info and drawings:

- Overall dimensions
- Extracting performance
- Feeding performance
- Motor information
- Gear reducer information

Main information for a correct sizing:

- Type of material to handle:
- e.g.: grit
- Organic matter removal required?
- e.g.: should we apply our machine or not?
- Flow rate and amount of grit to remove: e.g.: define FGC size (005, 008, 015, 025, 036)
- Place of installaton:
- e.g.: grit chamber
- Combination of materials: e.g.: 304/304 SS, 304 SS/mild steel, etc.

Mechanical Preliminary Treatment

Mechanical Preliminary Treatment

Combined Mechanical Effluent Pre-Treatment Plants WASTEMASTER® TSF V01

 $Q = 30 \sim 300 \ \text{l/s} \ (63 \sim 635 \ \text{cfm})$

- Highly efficient solids-liquid separation
- High flow rates and separation capacity
- Excellent price-performance ratio

WASTEMASTER® TSF V01

TSF 2 (without grease removal system)

TSF 2-3 RANGE

TSF 2/3			*FLOW RATE	
SIZE	Module	Tank Lenght	Min I/s	Max I/s
S10	1	2 m	5	13
S 2 0	2	4 m	12	30
M 1 0	2	4 m	25	39
M 2 0	3	6 m	35	60
M 3 0	4	8 m	60	85
L10	4	8 m	80	115
L 2 0	5	10 m	110	145
L30	6	12 m	140	175
L40	7	14 m	170	205

* 95% of sand sedimentation with a grain size of 0,2 mm and a Specific Gravity of 2,60-2,65 w/v

Main market needs:

- Modular design
- Possible on site assembly
- Best footprint-net volume ratio
- Durable heavy duty shaftless screws
- Self-adjusting scraper device
- Bolted wear bars
- Durable polymer brushes

Selling points:

- Machine designed for high density waste water
- Different configurations for both small and large tankers
- Heavy-duty shaftless screw conveyor with high resistance brushes and bearing support for cleaning and protecting the screen basket

- L1 = Minimum level of work / Minimaler Betriebswasserstand Minimum niveau de travail / Minimo livello di lavoro
- L2 = Max. level of work / Max. Betrlebswasserstand Maximum niveau de travail / MAX. livello di lavoro
- L3 = Alarm level / Wasserstand-Alarm Niveau d'alerte / Livello di allarme
- L4 = OVERFLOW / ÜBERLAUF DÉBORDEMENT / TROPPOPIENO

... in Technical Manual and drawing:

- Overall dimensions (drawings)
- Extracting performance
- Feeding performance
- Motor information
- gear reducer information

TSB1 Model Modeli TSB1 Modele TSB1	DRILLED PLATE SCREENS LOCHBLECHSIEBE CRIBLE PERCES VAGLIO FORATO	L1 (m)
Modello TSB1	05	
TS81/15	15	0.38
TS81/30	30	0.52

TSB1 Model Model/ TSB1 Modèle TSB1 Modello TSB1	dm ⁴ /sec
T8B1 / 15	0.18
TSB1/30	0.33

Main information for **correct sizing**: Type of material to handle:

e.g.: septic pit waste water Quality of material?

e.g.: screen mesh, difficult environmental conditions Flow rate, outlet side:

e.g.: define size of TSB 1 (15 or 30) Place of installaton:

e.g.: existing channel or dedicated tank Combination of materials e.g.: 304/304 SS, 304 SS/mild steel, 316/316 SS, etc.

THANK YOU

