

Strategic Environmental Assessment (SEA)

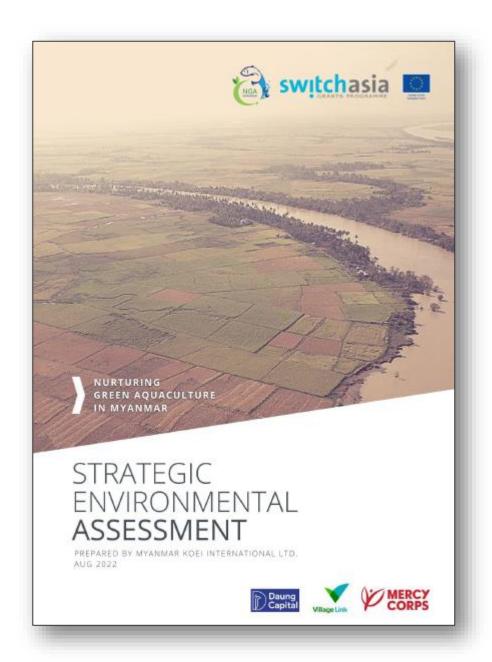
Nurturing Green Aquaculture in Myanmar

Myanmar Koei International Ltd. (MKI) May 31, 2023

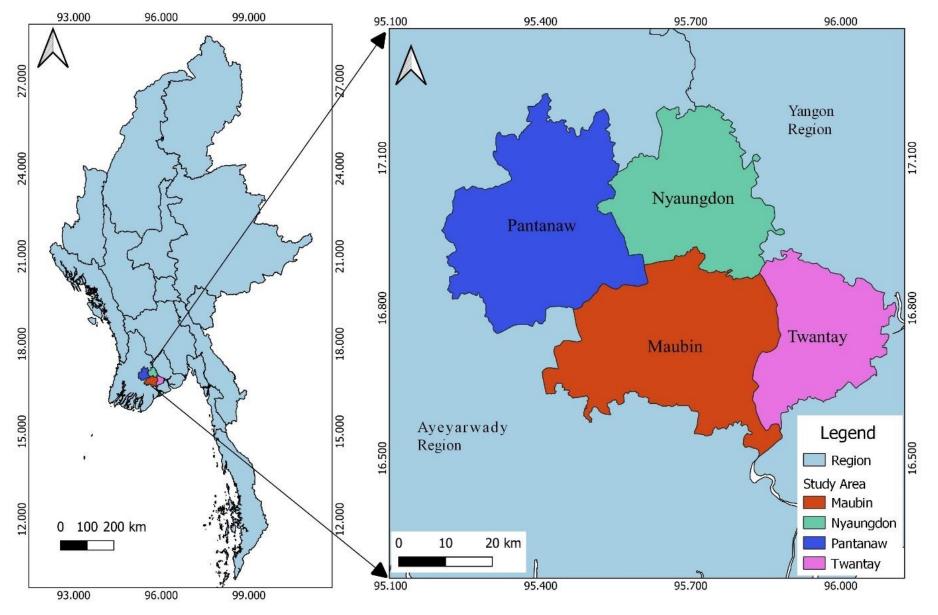
Outlines

01. Introduction

02. Legal Framework and Institutional Landscape


O3. Yangon-Ayeyarwady Aquaculture Corridor

04. Water Quality Parameter and On- farm Emission


05. Impact
Assessment and
Recommendation

Introduction

This SEA aims providing a high-level examination of the environment protection aspects in aquaculture sector in the Yangon-Ayeyarwady aquaculture production centers to contribute to the integration of environmental considerations into the implementation of the EU funded NGA-Myanmar program, with a view of promoting sustainable development.

Location of the Study

May 31, 2023

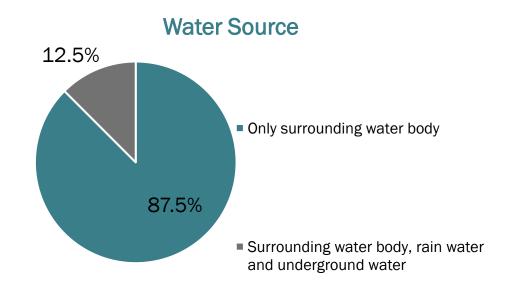
Figure: Four targeted townships of this study

Source: MKI

Legal Framework and Institutional Landscape

Legal Framework

- National Law
- Compliance to International Law
- ☐ Government Strategies and Plans
- ☐ Policy Related to Environmental Assessment
- ☐ National Environmental Quality Emission Guideline (NEQG)


Institutional Landscape

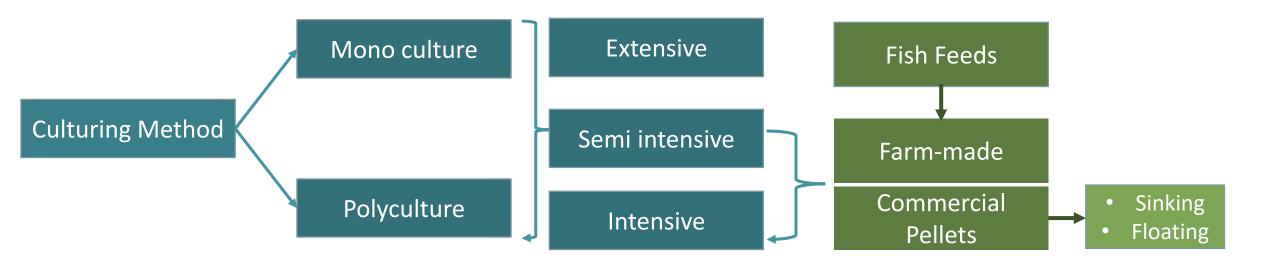
- The Department of Fisheries
- ☐ The Environmental Conservation
 Department (ECD)
- The Myanmar Fisheries Federation (MFF)

Yangon-Ayeyarwady Aquaculture Corridor

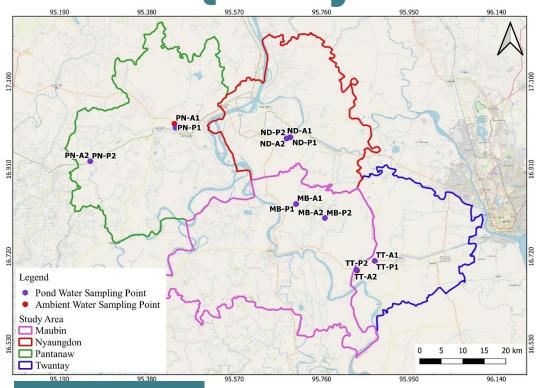
Fish Ponds' Information and Production Rate at Study Townships

Township	Fish Pond Number	Total Pond (Acres)	Fish Production (Vises)
Twantay	3,692	34,198	164,908
Maubin	1,389	53,929	131,792
Pantanaw	351	17,967	51,164
Nyaungdone	1,321	29,924	13,451

Source: Township Profile Book, (2020), General Administration Department


Commonly Cultured species in study townships

	Fish	Species (My	yanmar Nar	me/English I	Name)	
1.Nga Myit Chin (Rohu)	2. Nga Thine Gaung Pwa (Catla)	3. Nga Gyin (Common carp)	4. Nga Gyin (Mrigal)	5. Tilapia (Tilapia)	6. Nga Tan (Striped fish)	7. Myet Serr Nga Gyin (Grass carp)


- All fish farms surveyed were polyculture fish farms (more than two species cultured).
- Rohu and Catla were the most cultured species.

Yangon-Ayeyarwady Aquaculture Corridor

Current Aquaculture Practices

Water Quality Parameter and On-farm Emission


Water Sampling Collection

Each Study Township Ponds water: (2) Locations

Ambient Water: (2) locations

TT-P1, Polyculture, 13 acres, farm-made feed, Twantay Canal

Water Quality
Parameters

- Temperature ●pH
- Dissolved Oxygen
- Turbidity
- Total Suspended Solids
- •Nitrate •Ammonia
- Total Nitrogen
- ◆Total Phosphate
 ◆Other phosphate

Rating of Water Quality
Excellent water quality
Good water quality
Poor Water quality
Very poor water quality
Unsuitable for drinking purpose

Water Quality Status

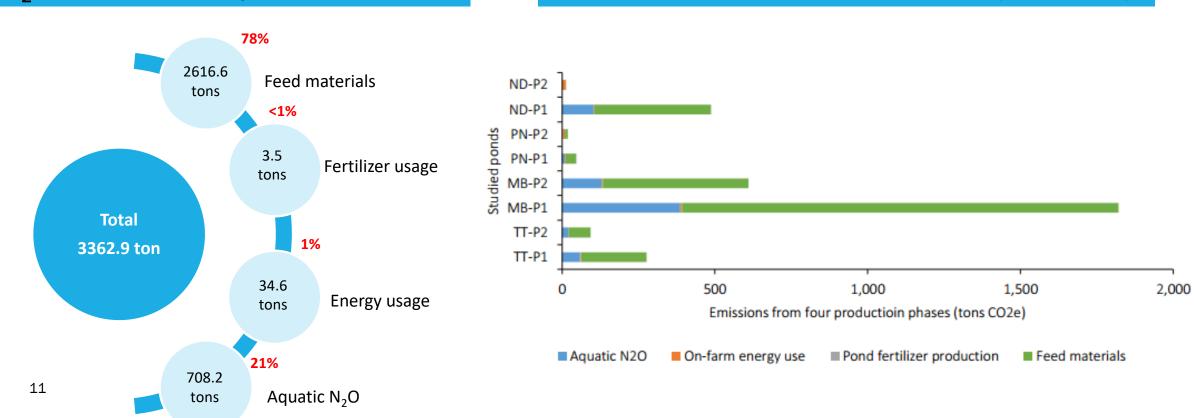
Sampling points	TT-A1	TT-A2	ND-A1	ND-A2	PN-A1	PN-A2	MB-A1	MB-A2
WQI	47.53	59.44	53.61	51.05	51.61	45.56	53.14	43.73
Status	Good	Poor	Poor	Poor	Poor	Good	Poor	Good

Note: Weighted arithmetic water quality index approach (Brown et al 1970) is appliced.

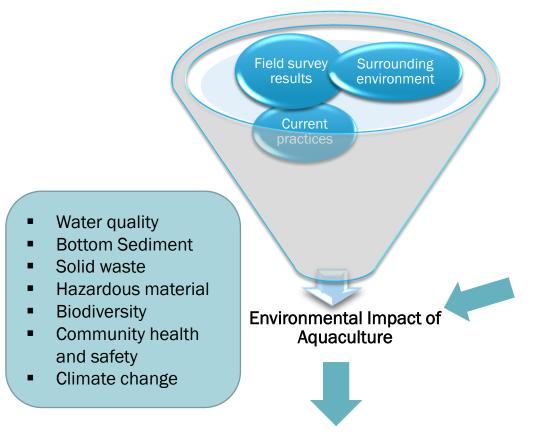
Pond Water Quality Survey Results

No.	Parameters	Unit	Twa	intay	Nyaun	gdone	Panta	naw	Maubin		NEQG	Pond water
	Date		13 Jul	y 2022	14 July	y 2022	14 July	2022	15 July 2022		Guideline	quality in
	Point		TT-P1	TT-P2	ND-P1	ND-P2	PN-P1	PN-P2	MB-P1	MB-P2	Value for	Aquaculture
	Time		10:14	11:20	09:44	10:33	12:12	14:33	09:27	11:55	Aquaculture	(Permissible
											(Effluent	Level)
											Levels)	(Boyd C. E
												1990)
1	Temperature	۰C	29	29	27	26	28	28	27	29	<3b	26-32 (Species
												dependent)
2	рН	-	6.5	6.6	7.8	7.3	7.9	7.3	7.6	8.0	6-9	6.5-8.5
3	Dissolved Oxygen	mg/L	5.50	1.12	4.31	1.56	6.68	3.70	3.29	5.67	-	4-8 (species
												dependent)
4	Turbidity	NTU	143	214	39	266	100	139	185	144		25-80
5	Water Discharge and Level	m³/s	-	-	-	-	-	-	-	-		
6	Total Suspended Solids (TSS)	mg/L	130	80	25	170	540	100	100	80	50	200
7	Nitrate	mg/L	<0.1	1.6	<0.1	1.2	<0.1	8.1	<0.1	<0.1		0.2 – 10
8	Ammonia	mg/L	<0.02	<0.02	<0.02	<0.02	0.22	0.39	<0.02	<0.02		0-0.5
9	Total Nitrogen (TN)	mg/L	<2	<2	<2	9	5	<2	6	<2	10	0.5-4.5ppm
10	Orthophosphate	mg/L as	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25		
		PO ₄ ³⁻										
11	Total Phosphorus (TP)	mg/L as P	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	2	0.1 -0.5

Ambient Water Quality Survey Results


	Parameters		Twa	ntay	Nyaun	gdone	Panta	anaw	Ma	ubin	Vietnamese
	Date		13 July 2022		14 July 2022		14 July 2022		15 July 2022		Environmental Standard for surface
No.	Point	Unit	TT-A1	TT-A2	ND-A1	ND-A2	PN-A1	PN-A2	MB-A1	MB-A2	water
	Time		09:48	11:46	09:15	10:56	12:56	14:07	09:06	11:23	Class (for domestic water supply)
1	Temperature	۰C	28	29	26	26	27	27	27	28	-
2	рН	_	6.4	6.7	6.6	6.5	6.7	6.7	7.1	7.0	6-8.5
3	Dissolved Oxygen	mg/L	1.30	0.74	1.44	1.31	0.00	0.55	2.09	1.33	≥ 5
4	Turbidity	NTU	69	38	37	123	22	20	60	88	-
5	Water Discharge and Level	m³/s	2.41	0.14	0.58	0.62	0.14	0.20	1.85	0.72	-
6	Total Suspended Solids	mg/L	50	40	20	100	10	15	33.33	80	30
7	Nitrate	mg/L	0.4	3.5	2.6	<0.1	2.3	1.2	1.6	<0.1	5
8	Ammonia	mg/L	0.16	<0.02	<0.02	0.16	0.26	0.1	0.14	<0.02	-
9	Total Nitrogen	mg/L	<2	<2	2	3	3	<2	5	4	-
10	Orthophosphate	mg/L as PO ₄ ³⁻	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	-
11	Total Phosphorus	mg/L as P	<0.15	0.18	<0.15	<0.15	0.78	<0.15	<0.15	<0.15	-

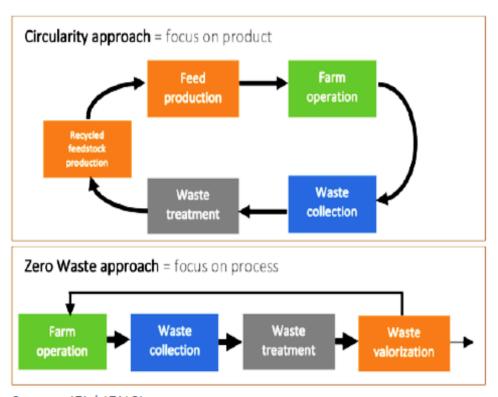
On-farm Emission



CO₂ Emissions from Aquaculture

Emissions from four Production Phases (tons CO2 e)

Impact Assessment



Impact Character	Symbol	Description			
Probability	VP	Impact very likely to occur			
,	Р	Impact likely to occur			
	++	Large positive impact			
	+	Positive impact			
Scale	0	No impact			
	-	Negative impact			
		Large negative impact			
Diverse / In aliverse	1	Indirect impact			
Direct/ Indirect	D	Direct impact			
	LT	Long term			
Frequency/ duration	ST	Short term			

Recommendations

Promoting Appropriate Aquaculture Practices

Recommended circular bioeconomy by using both circularity and zero waste pathways.

What	How
Improved feed formulations & circularity of feed ingredients	 Improved feed formulations, both for home-made production and commercial one. Production of 'green water' rich in natural feed especially for micro/small operators in extensive production system
Resource efficiency of feeding	 Monitor FCR and make improvement to minimize nutrient excretion Promote 'smart-feeding' technology for medium/large operators.
Circularity of waste	 Integrated aquaculture systems, either polyculture or integrated aquaculture-agriculture systems.

Source: iFishIENCi

Recommendations

Water Quality Monitoring

- Considering the rapid growth of aquaculture sector in the Yangon-Ayeyarwady aquaculture corridor, the degradation of ambient water quality in the long-term should be expected, if no environmental safeguard is implemented.
- Setting the objectives (to prevent degradation of ambient water quality)
- Providing capacity building on pond water quality management
- Effective low cost in-situ measurement
- Setting the water quality monitoring method (sensor method or test strip method)
- Standard or guideline value
- Design and implement low-cost participatory water quality monitoring

