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ABSTRACT 
Evidence is scarce on how conflict affects technology adoption and consequent agricultural 
productivity in fragile states, an important topic given the high share of the extreme poor living in 
fragile environments globally. Our study contributes to filling this knowledge gap by using unique 
large-scale data on rice producers in Myanmar before and after a military coup in 2021, leading to a 
surge of conflicts in the country. We find that the increase in violent events significantly changed rice 
productivity. Specifically, increases in fatal violent events between 2020 and 2021 reduced rice Total 
Factor Productivity (TFP) – a measure of how efficiently agricultural inputs are used to produce rice 
– by about 4 percent on average in the short-run. Moreover, poorer farmers are more affected by 
conflict, as seen through an increased output elasticity to agricultural equipment owned, indicating 
reduced output resilience for less-capital owning, and therefore poorer, farmers. This seems partly 
due to reduced access to agricultural extension services, which would otherwise help farmers 
maintain productivity, even with limited capital ownership, through substitution with human capital 
and skills. Lower mechanization service fees partly mitigate these effects. Our results consistently 
hold for both short- and long-run production functions, across various specifications, and in Upper 
and Lower Myanmar. These findings suggest that containing and reducing violent events is critical 
in restoring rice productivity. Improved access to extension services, as well as to cheap 
mechanization service provision to mitigate lack of equipment ownership, could compensate for 
these losses and boost the productivity of farmers, especially for those with less production capital, 
in such fragile settings.    

 
Keywords: conflict, production function, total factor productivity, inverse-probability weighted 
GMM, rice, Myanmar 
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1. BACKGROUND 
The increasing and widespread adoption of improved technologies has been shown to be one of the 
key long-run drivers of agricultural output growth globally, including in the developing world (Hayami 
& Ruttan 1985; Evenson & Westphal 1995; Gollin et al. 2021). Many studies have examined how 
agricultural technologies change in response to various production factors (e.g., Mundlak 1988). An 
important strand of the literature has focused on technologies expressed in the form of production 
functions. It shows empirically how agricultural productivity is explicitly affected by, among others, 
changes in market prices (Fulginiti & Perrin 1993), type of inputs used (e.g., improved varieties 
(Rozelle et al. 2003), agricultural mechanization (Takeshima 2017; Takeshima et al. 2018)), ICTs 
(Lio & Liu 2006), human capital and health (Allen et al. 2014; Wouterse 2016, 2019), or agricultural 
policies (e.g., Gong 2018; Feng et al. 2021). 

However, an important knowledge gap exists on how fragile environments – characterized by 
conflicts and violence - affect agricultural technology adoption and productivity. This is an important 
topic as most of the extreme poor globally reside in fragile environments (OECD 2020). As markets 
are often dysfunctional, these areas often rely on their own agricultural production to ensure survival 
and food security. However, given data on agriculture in fragile areas are scarce, there is a lack of 
understanding the role of agricultural technology adoption and consequent productivity in these 
settings. Filling this knowledge gap is vital because fragility, leading to disruptions in agri-food 
systems, is on the rise, particularly in countries with low income and weak governance (e.g., OECD 
2020; Binswanger & Deininger 1997; Blattman & Miguel 2010; Leon 2014; OECD 2020).  

This study aims to (partly) fill this gap by examining the case of rice in Myanmar during the period 
2020 and 2021. Myanmar over this period is a suitable case because a military coup in February 
2021 led to dramatic nationwide increases (by 10-fold on average in 2021, compared to 2020) in 
violent events such as battles, explosions, and violence against civilians, each with different levels 
of fatality. The intensity of these incidents has been heterogeneous across space, with relatively little 
inter-spatial correlations, providing significant temporal and spatial exogenous variations in the 
extent of violent events and shocks to agricultural production technologies. We capture production 
practices across farmers with varying exposures to violent events before and after the military coup, 
which we exploit to identify their effects on rice production, the country's most important staple.1    

We do so by estimating farm household-level rice production functions, and their variations in 
response to the changes in the intensity of violent events, using nationally representative phone 
surveys panel data on farm households’ rice production practices combined with monthly township-
level data on violent events. We also apply recently developed methodologies in the impact-
evaluation literature, i.e. the inverse-probability weighted generalized method of moments (IPW-
GMM, that can mitigate potential endogeneity in both input variables in the production function and 
exposures to possible consequences of conflict. Our results indicate that increases in violent events 
lowered total factor productivity (TFP) in rice production and made the prevailing rice production 
technologies more dependent on their own agricultural capital. Rice production technologies have 
therefore changed in favor of farmers owning more agricultural capital but against farmers with less 
agricultural capital, often the poorest. We also find that lower mechanization service fees partly 
mitigate these effects. 

The paper contributes to various strands of the international literature. Thematically, the study 
contributes to the endogenous productivity analysis (Mundlak 1988; Fulginiti & Perrin 1993; Lio & 

 
1 Phone surveys have been increasingly used with reasonable reliability for collecting nationally representative farm household data in 
developing countries, particularly since the onset of COVID-19 (e.g., Gourlay et al., 2021). Despite some shortcomings of phone 
surveys, specific evidence associated with social insecurity combined with the COVID-19 type pandemic in developing countries may 
often be available only through phone surveys because of considerable challenges in gathering data through in-person interviews under 
these conditions. Our study can offer the second-best critical evidence, otherwise unavailable.    
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Liu 2006; Allen et al. 2014; Wouterse 2016, 2019; Gong 2018; Feng et al. 2021) by providing 
additional evidence of how agricultural production technologies may be directly affected by conflict. 
The study also relates to the literature on the relationship between capital ownership and productivity 
(e.g., Takeshima et al. 2018; Qian et al. 2022) by showing how the changes in output elasticity of 
capital in production functions result from increased conflicts. Methodologically, the study contributes 
to the impact evaluation literature that combines IPW-GMM with the estimation of endogenous 
production functions (Takeshima 2017; Takeshima et al. 2018). While international conflict 
assessments have often focused on causes and consequences of violence (e.g., Collier 2003; 
Blattman & Miguel 2010), the studies that looked at the agro-food system have all almost exclusively 
looked at agricultural price effects (e.g., Bellemare 2015; Maystadt & Ecker 2014) and few have 
assessed agricultural productivity relations. Finally, the study adds to the literature on Myanmar by 
focusing on the effects of recent crises (e.g., Boughton et al. 2021; Goeb et al. 2022a, b; Headey et 
al. 2022; Takeshima et al. 2022) by offering additional evidence on their effects on agricultural 
production technologies. 

This study is structured as follows. Section 2 presents background contexts linking rice 
production, agricultural extension services, and conflict. Section 3 describes the data. Section 4 
discusses empirical methodologies. Section 5 discusses the results. Finally, section 6 concludes.  

2. RICE PRODUCTION, AGRICULTURAL EXTENSION 
SERVICES, AND CONFLICT IN MYANMAR 

Rice is one of Myanmar's most important staple crops, accounting for 51 and 62 percent of urban 
and rural calories consumed respectively (MAPSA 2022), and for approximately 1/3 and 1/2 of total 
agricultural and crop production in gross values respectively (FAO 2022). Rice production in 
Myanmar involves many smallholders, with average rice farm areas at 5.3 acres (about 2.1 hectares) 
(MAPSA 2022 Table 2). While the production is predominantly in the lowland, rice production is 
scattered across different ecologies, including Lower Myanmar (which corresponds to the Delta 
(Yangon, Bago, Ayeyarwady, Mon) and the Coastal zones (Rakhine, Tanintharyi)) and Upper 
Myanmar (which corresponds to the Central Dry zone (Mandalay, Magwe, Nay Pyi Taw, Sagaing) 
and the Hills and Mountains areas (Chin, Kachin, Kayah, Kayin, Shan)).  

In both Upper and Lower Myanmar, major monsoon rice production typically occurs from 
June/July through October. A significant number of people are involved in rice production in 
Myanmar, as the agricultural sector employed 49 percent of the labor force in 2019, higher than in 
South Asia (42 percent) and East Asia & Pacific (27 percent) (World Bank 2022). A growing share 
of rice farmers own agricultural equipment, including about 1/3 for small tractors and ½ for water 
pumps (as described more in detail later) used for mechanization of land preparation, transportation, 
and water lifting (MAPSA 2022). Using their machines, especially tractors, supplements the custom-
hiring services other tractor owners provide.  

Rice production in Asia, including Myanmar, has remained knowledge-intensive, with productivity 
dependent on good husbandry practices by manual workers, irrigation application methods, planting 
techniques (transplanting or direct seeding), weeding and herbicide applications, pest management 
(Barker et al. 1985), and grain quality (Unnevehr 1986), among others. Consequently, knowledge 
transfer roles have remained significant in Asia's rice intensification process in recent decades 
especially (e.g., Fafchamps et al. 2021; Barrett et al. 2022). Given rapid transformation of the rice 
sector (Reardon et al. 2014) and the susceptibility of rice production to yearly biotic and abiotic 
shocks, which grow increasingly intensive due to climate change2, frequent access to extension 

 
2 Myanmar is ranked 2nd among climate hazardous countries globally, according to the Global Climate Risk Index (Eckstein et al. 2021). 
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services (e.g., at least yearly) is also becoming increasingly important. In Myanmar, these extension 
services are provided by public sector extension agents, private sector ones like commercial trade 
companies and various associations related to rice production and export, NGOs (GFAS 2022), and 
mobile-phone-based apps (Thar et al. 2021). As described in the later section, about half of rice 
producers had access to extension services before the coup in 2020.   

The rice sector, as well as the overall society in Myanmar, has been significantly affected by 
political instability since early 2021, including through increased incidences of violent events. 
According to the definitions by the ACLED, the number of reported incidences of violent events 
increased almost 10-fold in 2021 compared to the previous years (Figure 1). These violent events 
have been observed across the country in a spatially heterogeneous way (Figure 2).3 MAPSA (2022) 
shows that, partly due to the increased political crisis, rice production at the national level dropped 
by 3.4 percent between 2020 and 2021. In addition to the overall production reduction, there is 
concern about the degradation of rice production technologies in Myanmar. As is indicated in 
subsequent sections, the share of rice producers receiving extension services in at least some forms 
declined by about 10 percentage points from 50 percent to 40 percent (an almost 20 percent decline) 
between 2020 and 2021, with a more significant reduction in areas with more violent events. The 
aforementioned rice production characteristics and trends in violence and extension access motivate 
our analyses of the potential changes in rice production functions in Myanmar. 

Figure 1. Number of fatal violent events in Myanmar, 2017 ~ 2021 (nationwide annual total) 
 

 
Source: Authors based on ACLED (2022). 
Note: Violent events include battles, explosions/remote violence, and violence against civilians (Raleigh et al. 2010). 

 
3 Spatial correlation coefficient (Moran’s I) at township levels based on Figure 2 is around 0.3, indicating somewhat limited spatial 
correlations and rather significant spatial heterogeneity across townships.   
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 Figure 2. Spatial distributions of incidences of violent events (annual total in 2021, by 
township) 

 
Source: Authors based on ACLED (2022).  

3. DATA 
Our primary household data come from the Myanmar Agricultural Performance Survey (MAPS), a 
sub-sample of 12,100 households interviewed by phone during the first round of the Myanmar 
Household Welfare Survey (MHWS) fielded at the beginning of 2022. The MAPS focused on 
agricultural activities of 5,465 households identified as crop farmers in the MHWS. This survey was 
implemented by phone by Myanmar Survey Research (MSR) from February 11th until March 25th, 
2022. Approximately 71 percent of the farmers (3,891) interviewed in the first round of the MHWS 
could be reached for a second follow-up interview.4 Of the 3,891 crop farmers in the MHWS, 2,672 
farmers (69 percent) cultivated rice in the 2021 monsoon. The analysis presented in this paper 
focuses on these rice farmers in particular. Among 2,672 rice-producing farm households, 2,348 
reported all the information on production factors for both the 2021 and 2020 monsoon seasons (the 

 
4 Further details of the datasets are provided in MAPSA (2022). 
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latter based on recall), which is necessary for the analyses of production functions. We, therefore, 
focus on the data from these 2,348 rice-producing farm households in our analyses.  

We supplement the aforementioned primary data with various spatial data on weather, 
agroclimatic conditions, COVID-19 incidence, and data on the incidence of conflict. Historical rainfall 
data are obtained from The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) 
(Funk et al. 2015). Historical monthly temperature data are obtained from NOAA (2022), soil data 
from FAO et al. (2012), and nighttime light data from Elvidge et al. (2021). COVID-19 cases by 
township are extracted from COVID Myanmar Dashboard 2022.5 Lastly, the data on the total monthly 
figures of fatal violent events at township levels in 2020 and 2021 are extracted from The Armed 
Conflict Location & Event Data Project (ACLED) (Raleigh et al. 2010). Violent events include battles, 
explosions/remote violence, and violence against civilians.6  

4. EMPIRICAL APPROACH 
One of the common approaches in the literature on endogenous technology analysis is to express 
technologies in the form of production functions and examine the endogeneity of technologies by 
assessing how the shape of production functions changes in response to external shocks. The 
effects on the shape of the production function can be examined under both “short-run” and “long-
run” conditions. Some argue that production functions sometimes might exhibit long-run technology 
relations (e.g., Basu 2008), in which case different estimation methods are employed, as described 
below.    

4.1 Short-run production function 
In the short-run, farmer fixed-effects are assumed to be unchanged. In such case, a standard fixed-
effects panel data model can be estimated. Specifically, we estimate 

 ln𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼𝑠𝑠 ⋅ 𝑠𝑠𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑋𝑋 ⋅ ln 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑋𝑋𝑋𝑋 ⋅ (ln 𝑥𝑥𝑖𝑖𝑖𝑖 ⋅ 𝑠𝑠𝑖𝑖𝑖𝑖) + 𝛾𝛾 ⋅ 𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 (1) 
 

where the rice production by a farmer 𝑖𝑖 in year 𝑡𝑡 (𝑦𝑦𝑖𝑖𝑖𝑖) is expressed in a Cobb-Douglas function 
form, with a vector of the quantity of production factors 𝑥𝑥𝑖𝑖𝑖𝑖 (capital (agricultural equipment), land, 
family labor (adult male, adult female, child), chemical fertilizer, irrigation, and other cash expenses) 
and coefficients 𝛽𝛽𝑋𝑋, controlling for the effects of other covariates 𝑧𝑧𝑖𝑖𝑖𝑖 and farmer fixed effects 𝑐𝑐𝑖𝑖. The 
parameter 𝛽𝛽𝑋𝑋 corresponds to the output elasticity with respect to each production factor. Changes in 
the intercept term in the log form of the Cobb-Douglas production function are often interpreted as 
changes in Hicks-Neutral productivity levels (Lio & Liu 2006; Lee et al. 2019) or changes in TFP 
(e.g., Gong 2018). In (1), the term (𝛼𝛼0 + 𝛼𝛼𝑠𝑠 ⋅ 𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖) corresponds to the intercept, and changes in 
this term can be roughly interpreted as the change in TFP under reasonable assumptions. Coefficient 
𝛼𝛼𝑠𝑠 proxies the effects of 𝑠𝑠𝑖𝑖𝑖𝑖 on TFP change. Notation 𝜀𝜀𝑖𝑖𝑖𝑖 represents idiosyncratic errors. Production 
function coefficients are allowed to vary as a linear function of the effects of external shocks 𝑠𝑠𝑖𝑖𝑖𝑖 
(number of violent incidents in the township), measured by 𝛽𝛽𝑋𝑋𝑋𝑋. We use the statistical significance 

 
5 Available at https://datastudio.google.com/u/0/reporting/445c1281-c6ea-45e4-9bc0-5d561c511354/page/DoBKB. Accessed December 
7, 2022. 
6 More detailed definitions of violent events are provided in https://acleddata.com/acleddatanew/wp-
content/uploads/2021/11/ACLED_Codebook_v1_January-2021.pdf. Battles can include armed clashes, the government’s regaining 
territories, and non-state actors’ overtaking territories. Explosions/remote violence include chemical weapons, air/drone strikes, suicide 
bombs, shelling/artillery/missile attacks, remote explosives/landmines/IED (improvised explosive devices), and grenades. Violence 
against civilians includes sexual violence, attacks, and abduction/forced disappearances. 

https://datastudio.google.com/u/0/reporting/445c1281-c6ea-45e4-9bc0-5d561c511354/page/DoBKB
https://acleddata.com/acleddatanew/wp-content/uploads/2021/11/ACLED_Codebook_v1_January-2021.pdf
https://acleddata.com/acleddatanew/wp-content/uploads/2021/11/ACLED_Codebook_v1_January-2021.pdf
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of 𝛽𝛽𝑋𝑋𝑋𝑋 as measures for variations in the level of shocks 𝑠𝑠𝑖𝑖𝑖𝑖 in Myanmar between 2020 and 2021 
significantly affecting rice production and underlying production technologies.7  

 Among inputs 𝑥𝑥𝑖𝑖𝑖𝑖, the agricultural capital variable is measured by the number of different types 
of agricultural equipment owned by the respondent household. Specifically, these consist of small 
tractors (two-wheel tractors or power tillers), four-wheel tractors, trawlarjees (a rudimentary 
motorized vehicle consisting of a tractor engine mounted onto a cart or trolley), and motorized water 
pumps for agriculture. Past studies (e.g., Mottaleb et al. 2016) use similar indicators in Bangladesh 
to characterize agricultural equipment ownership.8 In the short-run model (1), production factors 𝑥𝑥𝑖𝑖𝑖𝑖 
can be assumed as exogenous once we control for time-invariant household fixed effects 𝑐𝑐𝑖𝑖. The 
long-run production function analyses described in the subsequent sections handle potential 
endogeneity more explicitly.   

4.2 Long-run production function  
In contrast to a short-run fixed-effects model (1), a long-run production function is better assessed 
through a cross-sectional specification because in the long-run, farm household fixed effects also 
change (Basu 2008; Gollin et al. 2016). In this framework, however, endogeneity from two sources, 
i.e., that of exposures to shocks 𝑆𝑆, as well as that of input variables 𝑋𝑋 in the production function, 
poses bigger challenges for estimation than in (1).    

The inverse probability weighting model (IPW) (Horvitz & Thompson 1952; Imbens & Wooldridge 
2009) addresses the first type of endogeneity. Instrumental variable (IV) regressions, including 
Generalized method of moments (GMM) can be used to address the second type of endogeneity 
issues. IPW-methods have been used in the literature to estimate the effects on production function 
parameters or similar frameworks (Cavatassi et al., 2011), with extensions to IPW-GMM (Takeshima 
2017). Under the assumption of conditional independence (ignorability), GMM estimation using self-
selected samples is consistent when weighted by the inverse of the probability (Abowd et al., 2001; 
Nicoletti, 2006; Chen et al., 2008).  

We therefore use IPW-GMM to estimate the long-run production function. Our IPW-GMM model 
proceeds as follows (modified from Takeshima 2017). We first estimate a Probit model, 

 
 Probability�𝑅𝑅∗ = 1|𝒵𝒵𝑖𝑖,𝑖𝑖=0� =  �̂�𝑝 = Φ(𝒵𝒵𝒵𝒵) = ∫ 𝜙𝜙(𝑣𝑣)𝑑𝑑𝑣𝑣𝒵𝒵𝒵𝒵

−∞ .  (2) 
 

where 𝒵𝒵𝑖𝑖𝑖𝑖 is the set of exogenous variables, including time-variant variables 𝑧𝑧𝑖𝑖𝑖𝑖 that appear in (1), 
and other time-invariant variables that are omitted in (1). �̂�𝑝  is the predicted propensity of farm 
households’ exposures to shocks above certain thresholds, 𝑅𝑅∗ is a binary variable indicating such 
exposure, and 𝒵𝒵  is a set of parameters to be estimated. Φ  is the standard normal distribution 
function, while 𝜙𝜙 and 𝑣𝑣 are the standard normal density function and its element. 

 We then estimate production functions separately for farmers with 𝑅𝑅∗ = 1 and 𝑅𝑅∗ = 0,  using 
cross-section data at t = 1,  

 
7 The use of recall data to construct panel specifications has been increasingly common in the literature. For example, Takeshima & 
Yamauchi (2012) uses recall data of a one-year lag to assess the impact heterogeneity of development intervention in Nigeria. Recall 
data for periods shorter than 5 years may be reasonably reliable (Deaton 1995 p.1805). Even for agricultural data, recall data bias from 
relatively short lag may be minimal (Beegle et al. 2012). Some studies show that recall errors may be more significant on marginal plots 
(Gaddis et al. 2021). This is unlikely the case in our study as we focus on the largest rice plot, one of the farmer's primary plots. 
Furthermore, the quality of recall data may be enhanced for memorable events or periods (Deaton 1995). This may be the case for 
Myanmar during 2020 and 2021, both of which were characterized by unusual shocks of COVID-19 restrictions and enhanced social 
insecurity due to a political crisis.     
8 We also tried an alternative approach of using the first principal component of the number of each type of machine, as is sometimes 
done to characterize agricultural equipment ownership (e.g., Calderón et al., 2015; Hassan et al., 2017). We find that our main results 
still hold using this indicator.   
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 ln 𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑋𝑋 ⋅ ln 𝑥𝑥𝑖𝑖 + 𝛾𝛾 ⋅ 𝒵𝒵𝑖𝑖 + 𝜀𝜀𝑖𝑖. (3) 

 
In IPW-GMM, equation (3) for farmers with 𝑅𝑅∗ = 1 is estimated by  

 
 �̂�𝛽 = arg min

𝛽𝛽
�𝐸𝐸�𝑚𝑚/��̂�𝑝��

′
𝑊𝑊� �𝐸𝐸�𝑚𝑚/��̂�𝑝��

′
 (4) 

 
and those for 𝑅𝑅∗ = 0 is estimated by 

 
 �̂�𝛽 = arg min

𝛽𝛽
�𝐸𝐸�𝑚𝑚/(�1 − �̂�𝑝)��

′
𝑊𝑊� �𝐸𝐸�𝑚𝑚/(�1 − �̂�𝑝)��

′
 (5) 

 
where 𝐸𝐸 is the expectation over samples and 𝑊𝑊�  is the suitable weighting matrix estimated in 

GMM. Weights are the inverse of “square root” of �̂�𝑝. 𝑚𝑚(⋅) is the moment condition,  

 
 𝑚𝑚 = 𝐙𝐙′[ln𝑦𝑦𝑖𝑖 − (𝛼𝛼 + 𝛽𝛽𝑋𝑋 ⋅ ln 𝑥𝑥𝑖𝑖 + 𝛾𝛾 ⋅ 𝒵𝒵𝑖𝑖)]. (6) 

 
where 𝐙𝐙 contain both 𝒵𝒵𝑖𝑖, as well as a set of excluded IVs, 𝒵𝒵𝑖𝑖∗, to instrument endogenous variables 

𝑥𝑥𝑖𝑖. 

Specifically, our excluded IVs (𝒵𝒵𝑖𝑖∗) are lagged values of inputs (𝑋𝑋𝑖𝑖,𝑖𝑖−1) (where t = 2021). The broad 
strands of development literature have commonly used lagged endogenous variables as IVs for 
contemporaneous values of these variables in static models (Angrist & Krueger 2001; Bloom & Van 
Reenen 2006; Sharma et al. 2016; Jetter & Parmeter 2018). The approach is valid if they are strongly 
correlated with the contemporaneous values of these variables while being independent of the 
contemporary error terms (Sharma et al. 2016). IPW-GMM is “doubly-robust” (Robins & Rotnitzky 
1995), meaning that the overall model is consistent as long as either the model of the propensity 
score �̂�𝑝 in (2), or the model of the production function (3) is consistent, even when the other model 
is misspecified (Takeshima 2017). 

 We then compare production function parameters, α and 𝛽𝛽𝑋𝑋’s, between two types of farmers 
(𝑅𝑅∗ = 1 and 𝑅𝑅∗ = 0). The statistically significant differences in α and 𝛽𝛽𝑋𝑋, respectively, between these 
groups are then interpreted as evidence that the shape of the production function changes in 
response to 𝑅𝑅∗. This is because weights applied to each sample based on IPW lead to matching 
samples, so that any differences in parameters from two samples can be attributed to the difference 
in 𝑅𝑅∗.  

 Since the estimation approaches (3) through (6) involve IPW based on estimated probability �̂�𝑝, 
standard errors are estimated through 100 bias-corrected paired bootstraps, as done in the previous 
studies (Efron & Tibshirani 1993; Barrett et al. 2008; Takeshima et al. 2018).   

Production function form 
Our analyses primarily use Cobb-Douglas production function forms for (1) and (3). The Cobb-
Douglas specification provides reasonable estimates of production function parameters when 
samples are small, and the endogeneity of multiple 𝑥𝑥𝑖𝑖 must be addressed, but it forces the elasticity 
of substitution between all factors to be one. The translog specification drops these restrictions but 
often complicates controlling for the endogeneity of multiple 𝑥𝑥𝑖𝑖, and the method leads to inefficient 
estimates if multicollinearity is severe. We, however, estimate translog production function forms as 
part of the robustness checks while treating all 𝑥𝑥𝑖𝑖 as exogenous and show that our results based on 
Cobb-Douglas production functions are robust. 
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4.3 Control variables 
Time-variant variables 𝑧𝑧𝑖𝑖𝑖𝑖 in (1) include general biotic and abiotic shocks that affect rice production. 
Specifically, they include annual rainfall and average temperature, measured as z-value with respect 
to historical averages, and whether the respondent experienced major incidences of pest outbreak 
or destruction by wild animals. Variable 𝑧𝑧𝑖𝑖𝑖𝑖 also includes the total annual COVID-19 case count in 
the township of respondent households.   

 The set of variables 𝒵𝒵 in (2) through (6) include the aforementioned time-variant variables 𝑧𝑧𝑖𝑖𝑖𝑖, 
as well as household demographics (age, gender, and education of primary farm decision maker of 
the household, the number of household members who are adult male, adult female, and children), 
the size of farm owned, household assets (the first principal component of asset items owned, similar 
to Filmer & Pritchett (2001)), and whether having a nonfarm income source. The variable 𝒵𝒵 also 
includes a night-time light luminosity index that captures the urbanization level in the respondent’s 
township. The variable 𝒵𝒵 also includes agroecological variables of respondents’ townships, including 
soil types (soil alkalinity, organic contents, textures, salinity, sodicity, drainage characteristics) and 
historical averages of annual rainfall and average temperature.  

4.4 Robustness of the effects on TFP 
As mentioned above, coefficient 𝛼𝛼𝑠𝑠 in the short-run function (1) can measure the effects of violent 
events on TFP under the parametric specification of production technologies. We also estimate the 
same effects on TFP in a nonparametric specification to obtain robust insights. Specifically, we 
estimate the Malmquist index, which was initially developed by Malmquist (1953) and has been used 
as one of the popular TFP indicators in nonparametric settings in the literature (e.g., Alene 2010; 
Pastor et al. 2011), and assess how this indicator is associated with changes in violent events. 
Specifically, we estimate a Sequential, Biennial Malmquist index (Pastor et al. 2011), which can 
accurately measure TFP changes even when underlying technologies exhibit variable, non-constant 
returns-to-scale, and under the assumptions that technologies available in 2020 were also available 
in 2021 in Myanmar (see Alene 2010; Pastor et al. 2011 for more detailed discussions).9  

Once the Malmquist TFP index is obtained, we revert back to parametric settings and estimate 

 
 Δ𝜋𝜋𝑖𝑖𝑖𝑖 = 𝛿𝛿0 + 𝛿𝛿𝑠𝑠 ⋅ Δ𝑠𝑠𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑧𝑧 ⋅ Δ𝑧𝑧𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖 (7) 

 
where Δ𝜋𝜋𝑖𝑖𝑖𝑖 is the growth rate of the Malmquist TFP indicator for farmer 𝑖𝑖 between 2020 and 2021, 

Δ𝑠𝑠𝑖𝑖𝑖𝑖 and Δ𝑧𝑧𝑖𝑖𝑖𝑖 are changes between 2020 and 2021 in the number of violent events and other time-
variant exogenous factors for farmer 𝑖𝑖. Parameters 𝛿𝛿 ’s are estimated coefficients, while 𝜀𝜀𝑖𝑖  is an 
idiosyncratic error term that further affects Δ𝜋𝜋𝑖𝑖𝑖𝑖. The coefficient 𝛿𝛿𝑠𝑠 is then used to assess the effect 
of violent events on the Malmquist TFP indicator. Past studies use similar two-step approaches, 
whereby TFP indicators are estimated first and then regressed on potential factors of interest (e.g., 
Evenson & Pray 1991; Alene 2010).   

 

 

 
9 The index is estimated using the STATA command malmq2. 
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5. RESULTS 
5.1 Descriptive statistics 
Table 1 summarizes the descriptive statistics of rice production practices during the monsoon 
season, on the respondent’s largest rice plots, in 2020 and 2021. Rice production is typically done 
on small plots of 1 acre, with outputs of about 1.3 tons at the median. Approximately 50 kg of fertilizer 
is used on the plot. On these largest plots, a median 156,750 Kyat of other expenses were made for 
seeds, agrochemicals and hired labor in 2020 (about USD 80), while the figure was higher at 200,000 
Kyat in 2021 (about USD 100). Typically, about 2 family members worked in rice production. The 
household also typically owned 1 type of agricultural equipment, commonly water pumps, small 
tractors, and in some cases trawlarjee or four-wheel tractors. About 31-32 percent of these plots 
were irrigated.  

Table 1: Rice production practices during the monsoon season on the respondent’s largest 
rice plots in 2020 and 2021 

Variables Mean Median 
Year 2020 2021 2020 2021 

Rice outputs (tons) 1.588 1.573 1.254 1.254 
Size of plots (acre) 1.288 1.289 1.000 1.000 
Fertilizer used (kg) 85.300 72.728 51.000 50.000 
Monetary expenditures on largest plot (1,000 Kyat) 238.043 260.155 156.750 200.000 
Number of family labor regularly working on the farm 2.259 2.000 2.269 2.000 
Agricultural capital ownership (yes = 1)     
Own small tractors (1 or 2 wheels, power tiller)  0.267 0.267 0.000 0.000 
Own 4-wheel tractors 0.046 0.047 0.000 0.000 
Trawlarjee 0.148 0.149 0.000 0.000 
Motorized water pump for agriculture 0.428 0.435 0.000 0.000 
Number of the type of machines owned (among 4) 1.177 1.197 1.000 1.000 
Use irrigation (yes = 1) 0.320 0.313 0.000 0.000 

Source: Authors. 

Table 2 shows the typical extent of fatal violent events experienced and receiving agricultural 
extension services. Typically, the number of fatal violent events increased from 0.4 to 2.9 between 
2020 and 2021 at sample medians (from about 1.5 to 16.7 at the means). During the monsoon 
season, the figures also increased from 0 to 1 at the median (from about 1.3 to 4.5 at the means). 
While almost 50 percent of the sample had access to agricultural extension services from any 
sources, the share dropped to 41.5 percent in 2021. 

Table 2. Fatal violent events in the township and access to agricultural extension services 
Variables Mean Median 

Year 2020 2021 2020 2021 
Number of violent events in the township (12 months total) 1.516 16.701 0.368 2.943 
Number of violent events in the township (monsoon season) 1.309 4.469 0.000 1.000 
Had access to agricultural extension services (yes = 1) 0.499 0.415 0.000 0.000 

Source: Authors. 

 Table 3 summarizes the descriptive statistics of baseline variables in 2020 used in the 
assessment of the long-run production function, differentiated by the level of exposure to violent 
events and extension service access in 2021. Most farm management decision-makers are male, 
with about half having completed education above standard 4. Most are smallholders, about half of 
them also have nonfarm incomes, and located about 0.7 hours from the nearest input market. About 
15 percent of them experienced pests/disease challenges in 2021. Typically, they are in areas with 
average rainfall of 2,000 mm per year, and 26.7 degrees centigrade. They are also scattered across 
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various states and regions. Importantly, those who experienced greater violent events or less 
extension services have statistically significant different characteristics than other types of farmers. 

Table 3. Descriptive statistics in 2020 
Variables Farmers in 

townships 
below 

median level 
of violent 
events in 

2021 

Farmers in 
townships 

above 
median level 

of violent 
events in 

2021 

Farmers 
with access 

to 
extension 

in 2021 

Farmers with 
no access to 
extension in 

2021 

Age 42.025 42.491 43.329 41.160*** 
Gender of primary farm decision maker (female 

= 1) 
0.316 0.356 0.260 0.409*** 

Education (above standard 4 = 1) 0.589 0.588 0.659 0.514*** 
Household member – adult male 1.854 1.997 1.979 1.863** 
Household member – adult female 1.949 2.114 2.011 2.040 
Household member – children 1.003 1.051 0.950 1.100*** 
Farm size owned in ha (natural log) 0.718 0.665 0.841 0.546*** 
Asset (principal component) –0.074 0.208 0.376 –0.258*** 
Nonfarm income (yes = 1) 0.559 0.555 0.578 0.537** 
Nighttime light (index) 0.118 0.239 0.177 0.173 
Distance to input market (hours) 0.742 0.694 0.660 0.779*** 
COVID case (annual total, per 1,000 population 

in the township) 
0.928 0.865* 0.904 0.893 

Mechanization service fees (four-wheel tractors, 
1,000 MMK / acre) 

28.113 26.644*** 26.644 28.205*** 

Soil properties     
Soil alkalinity (pH) 5.863 5.754 5.835 5.788* 
Organic contents (g / kg of soil) 2.135 1.541*** 1.797 1.917** 
Soil texture (% fine) 0.292 0.292 0.290 0.294 
Salinity (deciSiemens per meter) 0.410 0.521*** 0.504 0.420* 
Sodicity (% of soil) 4.131 2.352*** 3.005 3.591*** 
Poor drainage (%) 0.537 0.395*** 0.463 0.478 
Pests or disease (yes = 1) 0.149 0.145 0.156 0.137*** 
Animal damage (yes = 1) 0.031 0.026 0.025 0.032 
Historical average rainfall (mm) 2233.569 1874.585*** 1996.366 2133.808** 
Historical average temperature (℃) 26.657 26.618* 26.769 26.508* 
Rainfall anomaly (absolute value of z-statistics 

with respect to historical distribution) 
0.952 1.282*** 1.153 1.060*** 

Temperature anomaly  0.498 0.827*** 0.662 0.642 
State (Kachin) 0.009 0.058*** 0.027 0.036** 
State (Kayah) 0.001 0.020*** 0.011 0.009 
State (Kayin) 0.012 0.055*** 0.031 0.033 
State (Chin) 0.000 0.006** 0.004 0.002 
State (Sagaing) 0.041 0.330*** 0.182 0.171 
State (Tanintharyi) 0.000 0.037** 0.017 0.018 
State (Bago) 0.202 0.089*** 0.172 0.126*** 
State (Magway) 0.101 0.062* 0.115 0.051*** 
State (Mandalay) 0.078 0.096 0.079 0.094 
State (Mon) 0.020 0.035* 0.029 0.025 
State (Rakhine) 0.095 0.000* 0.044 0.057 
State (Yangon) 0.036 0.062** 0.045 0.051 
State (Shan) 0.141 0.101* 0.103 0.142** 
State (Ayeyawady) 0.241 0.023*** 0.111 0.168*** 
State (Nay Pyi Taw) 0.024 0.025 0.033 0.017 

Source: Authors. Asterisks indicate the statistically significant differences from farmers with access to extension  
(*** 1% ** 5% * 10%).  

5.2 Associations of violent events and access to extension services with rice 
productivity 

Short-run production function 
Table 4 summarizes the estimated short-run production function parameters from (1), where the 
output elasticity with respect to each factor is allowed to vary depending on the levels of violent 
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events or access to extension services. Importantly, for all of Myanmar (columns (a) and (b)), a 
greater intensity of violent events, or the lack of access to extension services, is associated with 
lower estimated values of intercepts, which are proxies of overall productivity, as indicated by 
significantly negative coefficients of –0.029 and –0.030 in columns (a) and (b), respectively. These 
coefficients suggest that one standard deviation increase in fatal violent events, or the lack of access 
to extension services, is associated with 2.9 percent and 3.0 percent lower overall productivity. At 
sample averages, the results translate into a 3.5 percent reduction in TFP between 2020 and 2021 
due to the increased violence. The degree of TFP reduction of 3.5 percent is sizable in Myanmar 
where agricultural-sector TFP growth has been fairly modest in recent years. Available estimates of 
recent annual TFP growth rates range from 0.5 percent / year between 2001-15 (IFPRI 2019), 0.13 
percent / year between 2002-2016) (Liu et al. 2020), and almost 0 percent / year between 2008 – 
2020 (USDA 2022).  

Table 4. Short-run production function estimations 
Variables (a) (b) (c) (d) (e) (f) 
Regions All 

Myanmar 
All 

Myanmar 
Lower 

Myanmar 
Lower 

Myanmar 
Upper 

Myanmar 
Upper 

Myanmar 
Type of shocks Violent 

events 
No 

Extension 
Violent 
events 

No 
Extension 

Violent 
events 

No 
Extension 

Labels Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Capital 0.014 
(0.027) 

–0.010 
(0.029) 

0.009 
(0.024) 

0.004 
(0.036) 

0.026 
(0.021) 

0.035 
(0.051) 

Capital × Shocks 0.008* 
(0.004) 

0.038* 
(0.020) 

0.011*** 
(0.003) 

0.053*** 
(0.016) 

0.006* 
(0.003) 

0.022 
(0.034) 

Land 0.488*** 
(0.036) 

0.479*** 
(0.042) 

0.592*** 
(0.085) 

0.578*** 
(0.124) 

0.473*** 
(0.065) 

0.432*** 
(0.042) 

Land × Shocks –0.002 
(0.007) 

0.006 
(0.030) 

–0.009 
(0.009) 

–0.023 
(0.033) 

–0.003 
(0.007) 

0.002 
(0.051) 

Labor –0.033 
(0.027) 

–0.058 
(0.042) 

0.003 
(0.028) 

–0.001 
(0.039) 

–0.059 
(0.045) 

–0.024 
(0.054) 

Labor × Shocks –0.001 
(0.005) 

0.035 
(0.022) 

–0.005 
(0.005) 

0.024 
(0.018) 

0.000 
(0.003) 

0.001 
(0.040) 

Fertilizer 0.039*** 
(0.012) 

0.057*** 
(0.017) 

0.057*** 
(0.013) 

0.059*** 
(0.017) 

0.041*** 
(0.014) 

0.065** 
(0.032) 

Fertilizer × Shocks –0.007 
(0.006) 

–0.032* 
(0.018) 

–0.005 
(0.007) 

–0.011 
(0.014) 

–0.009 
(0.008) 

–0.005 
(0.031) 

Irrigation 0.005 
(0.017) 

0.013 
(0.021) 

–0.004 
(0.010) 

–0.006 
(0.018) 

0.011 
(0.017) 

–0.044 
(0.041) 

Irrigation × Shocks –0.002 
(0.005) 

–0.008 
(0.018) 

0.005 
(0.007) 

–0.009 
(0.012) 

–0.002 
(0.006) 

0.049 
(0.034) 

Other expenses 0.037* 
(0.020) 

0.022 
(0.021) 

0.017 
(0.027) 

0.026 
(0.039) 

0.034* 
(0.021) 

0.036 
(0.049) 

Other expenses × Shocks 0.003 
(0.007) 

0.020 
(0.026) 

0.011 
(0.008) 

0.016 
(0.024) 

0.002 
(0.008) 

0.039 
(0.046) 

Intercept 7.040*** 
(0.013) 

7.046*** 
(0.018) 

7.169*** 
(0.012) 

7.167*** 
(0.020) 

6.948*** 
(0.010) 

6.937*** 
(0.027) 

Intercept × Shocks –0.029** 
(0.015) 

–0.030* 
(0.017) 

–0.011 
(0.010) 

–0.029** 
(0.014) 

–0.010* 
(0.006) 

–0.027 
(0.028) 

Farmer fixed effects 
 

Included Included Included Included Included Included 

Other controls 
 

Included Included Included Included Included Included 

Sample 4,696 4,696 2,118 2,118 2.578 2.578 
p-value (H0: variables 

jointly insignificant) 
.000 .000 .000 .000 .000 .000 

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10%   

Furthermore, a one standard deviation increase in violent events, or the lack of access to 
extension services, is associated with 0.008 and 0.038 greater output elasticity, respectively, with 
respect to agricultural capital. To the extent that production technologies affect the welfare of 
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producers, such increase in output elasticity with respect to agricultural capital owned can lead to 
significant reallocation of wealth from farmers with less capital to farmers with more capital. These 
technical changes may also occur during standard agricultural transformation processes in which 
declining capital price relative to labor price induces capital-biased technological changes (e.g., 
Binswanger & Ruttan 1978). However, the difference in our case is that a significant reduction in 
overall TFP is also involved, which is less likely under standard agricultural transformation 
processes. 

 Appendix Table 15 further provides insights into which sources of extension services may drive 
the aforementioned effects, obtained by re-running (1) by specifying access to different types of 
extension services (public sector, private sector, NGOs, cellphone apps). Results indicate that not 
accessing extension services from the public sector has the most significant effects compared to 
other sources. These may be because public sector extension services are often provided at 
subsidized costs, and not receiving it can be a significant net loss, while extension services from the 
private sector, NGOs, or mobile apps may be often received with greater costs and not receiving 
extension services from them can be somewhat offset by saving in payments to extension services.     

The patterns of reduced overall productivity, and higher output elasticity of agricultural capital, are 
also relatively robust in each of Lower Myanmar and Upper Myanmar, as shown in columns (c) 
through (f). These results suggest that the observed patterns of changes in short-run production 
functions hold in diverse rice ecologies in Myanmar. However, they are most robust and significant 
in Lower Myanmar, the site of most of Myanmar’s rice production. 

Other estimated coefficients are relatively reasonable. Production elasticity is approximately 0.5 
for land, 0.05 for fertilizer, and somewhat minor and insignificant for other factors. While the output 
elasticity of labor is slightly low and close to zero, similar results are observed with surplus labor in 
rural areas including, for example, in China in the earlier days of agricultural transformation (e.g., 
Wan & Cheng 2001; Fleisher & Liu 1992 p119). 

Long-run production function 
Table 5 through Table 7 summarize the estimated long-run production function (2) through (6), as 
well as the statistical significance of their differences between farmers with 𝑅𝑅∗ = 1 and farmers with 
𝑅𝑅∗ = 0, based on the primary specification for various shock factors for which 𝑅𝑅∗ is constructed. The 
correlates of 𝑅𝑅∗ from the first stage probit regression (2) are of secondary importance and thus 
presented in the Appendix.  

Table 5 suggests that primary results are consistent with the short-run production functions in 
Table 4; farmers in townships with greater intensity of violent incidents in 2021 experienced 
significantly lower overall productivity of rice production (as reflected in estimated values of intercepts 
which proxy TFP in Cobb-Douglas production function). Similarly, farmers in these townships 
experienced higher production elasticity of agricultural capital compared to those in townships with 
a lower incidence of violence. As was described in the methodology section above, these differences 
are solely attributable to the violent events, given that these production functions are estimated using 
IPW-samples. 

It is important to note that our focus in long-run production function results is the signs rather than 
the magnitudes of statistically significant coefficients. For example, results in Table 5 show that the 
estimated difference in intercept is -1.909. This can be interpreted as the reduction of TFP by a ratio 
of 2.9 (= 1.909 + 1), roughly equivalent to the differences in TFP in China between 1960 and 2020 
(USDA 2022). In other words, if the current violence continues at this rate for a very long time, it will 
eventually amount to a reduction in TFP in a similar magnitude than the counterfactual of fewer 
violent events.  
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Table 5. Long-run estimates of Cobb-Douglas production functions (differentiated by the 
median of violent events) 

Variables (a) (b) (c) = (b) – (a)  

Samples 
Less violent 

events (below 
median) 

More violent 
events (above 

median) 

Statistical 
significance of 

differences 
Labels Coef. 

(std.err) 
Coef. 

(std.err) 
Coef. 

(std.err) 
Capital 0.047 

(0.079) 
0.349*** 
(0.046) 

0.302*** 
(0.078) 

Land 0.687*** 
(0.070) 

0.647*** 
(0.065) 

–0.040 
(0.089) 

Labor 0.058 
(0.049) 

0.123*** 
(0.026) 

0.066 
(0.053) 

Fertilizer –0.011 
(0.029) 

0.101*** 
(0.019) 

0.113*** 
(0.037) 

Irrigation 0.192** 
(0.079) 

0.124** 
(0.061) 

–0.068 
(0.107) 

Other expenses 0.086 
(0.062) 

0.167*** 
(0.062) 

0.080 
(0.088) 

Intercept 4.698*** 
(0.915) 

2.789*** 
(0.831) 

-1.909* 
(1.119) 

Other controls 
 

Included Included Included 

Sample size 1110 1238  
P-value     
H0: no endogeneity .123 .007  
H0: underidentified .000 .000  
H0: jointly insignificant .000 .000  

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10% 

Similar to the short-run production results in Table 4, we further assess if the reduced access to 
extension services serves as a potential pathway for the observed effects in Table 5. Table 6 shows 
the determinants of the extension service access, including the intensity of violent events in the 
township. Table 6 shows that a one standard deviation increase in violent events in the township led 
to a 2.6 percent lower likelihood of having visits by agricultural extension staff. 
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Table 6. Effect of violence on the likelihood of having access to some forms of extension 
services (marginal effects of one-standard deviation change evaluated at sample means) 

Variables Coef. 
(Std.err) 

Violent events  –0.026**  (0.013) 
Age  0.029***  (0.011) 
Gender (female = 1)  –0.053***  (0.011) 
Education (above standard 4 = 1)  0.118***  (0.022) 
Household member – adult male  0.004  (0.010) 
Household member – adult female  –0.010  (0.010) 
Household member – children  –0.012  (0.009) 
Farm size owned in ha (natural log)  0.010  (0.007) 
Asset (principal component)  0.042***  (0.007) 
Nonfarm income (yes = 1)  0.013  (0.021) 
Nighttime light (index)  –0.025  (0.021) 
Distance to input market (hours)  –0.034**  (0.013) 
Mechanization service fees  –0.003 (0.013) 
Soil alkalinity (pH)  –0.010  (0.031) 
Organic contents (g / kg of soil)  –0.029***  (0.010) 
Soil texture (% fine)  –0.186  (0.126) 
Salinity (deciSiemens per metre)  0.081***  (0.030) 
Sodicity (% of soil)  –0.008***  (0.003) 
Poor drainage (%)  0.053  (0.045) 
Pests or disease (yes = 1)  0.095***  (0.028) 
Animal damage (yes = 1)  0.033  (0.062) 
Rainfall  0.010  (0.021) 
Temperature  0.006  (0.027) 
Incidence of COVID  0.344  (0.708) 
State dummy Included 
Sample size 2,348 
P-value (Ho: variables jointly insignificant) .000 

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10% 

 Table 7 shows similar results as Table 5, but with samples differentiated by whether or not 
having access to extension services instead. The results suggest that losing access to agricultural 
extension services was associated with significantly lower overall productivity and significantly higher 
elasticity of agricultural capital. While results for other production factors, such as fertilizer or labor, 
are also statistically significant, they are not consistent with the results in Table 5.  
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Table 7. Long-run estimates of Cobb-Douglas production functions (differentiated by 
extension access) 

Variables (a) (b) (c) = (b) – (a) 

Samples 
Having extension 

access 
No extension 

access 
Statistical 

significance of 
differences 

Labels Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Capital –0.024 
(0.059) 

0.145*** 
(0.046) 

0.169** 
(0.074) 

Land 0.823*** 
(0.102) 

0.722*** 
(0.056) 

–0.102 
(0.124) 

Labor 0.037 
(0.037) 

0.011 
(0.031) 

–0.026 
(0.050) 

Fertilizer 0.076*** 
(0.022) 

0.032* 
(0.018) 

–0.045* 
(0.025) 

Irrigation 0.107 
(0.081) 

0.101** 
(0.045) 

–0.005 
(0.097) 

Other expenses –0.005 
(0.087) 

0.199*** 
(0.055) 

0.204** 
(0.101) 

Intercept 4.989*** 
(1.116) 

2.742*** 
(0.887) 

-2.247* 
(1.364) 

Other controls 
 

Included Included Included  

Sample size 990 1358  
P-value     
H0: underidentified .000 .000  
H0: jointly insignificant .000 .000  

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10%. 

Results Table 4 through Table 7 collectively suggest that increases in violent events led to 
significant changes in the rice production function, reduced TFP, and increased elasticity of 
agricultural capital. These changes were likely catalyzed through reduced access to agricultural 
extension, among others. This might have been causes by reduced access to agricultural extension 
affecting farmers’ overall knowledge and thus reduced overall productivity while making the 
production more dependent on own agricultural capital, like equipment in which significant 
knowledge is already embedded (e.g., Douthwaite et al. 2001) and its use may be less knowledge-
intensive. These patterns also imply that farmers with limited ownership of agricultural equipment 
particularly suffer through the deterioration of production technologies resulting from increased 
violence and lost access to extension services. These findings suggest potentially regressive effects 
of an increase in violent events because owning fewer types of agricultural equipment is associated 
with lower household incomes (Figure 3). 
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Figure 3. Relation between agricultural equipment ownership and average household 
income 

 
Source: Authors. 
Note: Shaded bars are confidence intervals based on log-scale of average incomes (1,000,000 MMK ≈ USD 500). Household incomes 
include incomes from household members’ economic activities, as well as remittances received and other unearned incomes like rental 
incomes and pensions. 

Partial mitigation by access to mechanization services  
The observed effects on output elasticity of owned equipment raise a question as to how access to 
mechanization hiring services can partly substitute for the lack of own agricultural equipment, given 
the significant growth of such hiring services in Myanmar and other developing countries (Diao et al. 
2020; Belton et al. 2021). One possible way to gain insights into this question is to assess how the 
effects on output elasticity of owned equipment vary depending on the changes in mechanization 
fees between 2020 and 2021. This can be done by re-estimating production functions by adding 
another interaction term ln 𝑥𝑥𝑖𝑖𝑖𝑖 ⋅ 𝑠𝑠𝑖𝑖𝑖𝑖 ⋅ 𝒵𝒵𝑖𝑖𝑖𝑖 in the short-run production function (1) and ln 𝑥𝑥𝑖𝑖 ⋅ 𝒵𝒵𝑖𝑖𝑖𝑖 in the 
long-run production function (3), with 𝒵𝒵𝑖𝑖𝑖𝑖 indicating the per-acre hiring fees of four-wheel tractors, 
computed as sample median at township levels.10        

Table 16 through Table 18 show the short-run and long-run production function results. In Table 
16, the coefficient for capital interacted with violent events and mechanization fees is statistically 
significantly positive in Lower Myanmar (0.089), and that for capital interacted with extension and 
mechanization fees is statistically significantly positive for the whole of Myanmar (0.016). In the short-
run, higher mechanization service fees are associated with further (albeit insignificant) reduction in 
TFP. These effects are more pronounced in Lower Myanmar, where mechanization is more 
prevalent. These results imply that increases in output elasticity of equipment owned are mitigated 
(magnified) by lower (higher) mechanization fees for hiring four-wheel tractors. These results are 
consistent with the hypothesis that having access to more affordable mechanization services can 
mitigate the increased dependence on equipment ownership for rice production under increases in 
violent events.   

 Similarly, in Table 17 and Table 18, rows for “Capital × Mechanization fee” suggest that the 
effects of mechanization fees are significantly more positive where there are more violent events 
and/or farmers do not access extension services, as indicated by the right-most column. These 

 
10 In theory, terms ln 𝑥𝑥𝑖𝑖𝑖𝑖 ⋅ 𝒵𝒵𝑖𝑖𝑖𝑖 should also enter short-run production function (1). We, however, dropped these terms in (1) to avoid 
excessive multicollinearity problems. When included, no coefficient for these terms is significant, so excluding them does not bias the 
results. 
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results are again consistent with the hypothesis that lower mechanization fees partly mitigate the 
effects of violent events or lack of extension access on increased dependency on owned equipment.  

5.3 Robustness checks  
We check the robustness of our main findings. First, Table 8 shows the estimates based on the 
translog production function form instead of a Cobb-Douglas function form. As mentioned in section 
2, estimates of the output elasticity of each production factor are computed at sample medians. The 
results are generally consistent with our main results; the greater intensity of violent events is 
associated with a statistically significant decrease in the estimated intercept (an indication of reduced 
overall productivity) and a greater elasticity of agricultural capital. Similarly, the lack of access to 
extension services is associated with a greater elasticity of agricultural capital and reduced intercept 
(albeit with lower statistical significance). These results suggest that our main results hold under 
flexible production function forms and are unlikely the artifact of Cobb-Douglas production function 
forms.   

Table 8. Robustness check for Table 5 based on IPW-translog production function form 
(elasticity evaluated at sample medians) 

Variables (a) (b) (c)  (d) (e) (f) 
Shocks Violent events No extension access 

Samples 

Less violent 
events 
(below 

median) 

More violent 
events 
(above 

median) 

Statistical 
significance 

of 
differences  
(= (b) – (a)) 

Having 
extension 

access 

No extension 
access 

Statistical 
significance 

of 
differences 
(= (e) – (d)) 

Labels Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Capital 0.096*** 
(0.033) 

0.203*** 
(0.049) 

0.107* 
(0.065) 

0.009 
(0.055) 

0.125*** 
(0.043) 

0.115* 
(0.069) 

Land 0.651*** 
(0.069) 

0.789*** 
(0.101) 

0.138 
(0.135) 

0.708*** 
(0.111) 

0.720*** 
(0.091) 

0.012 
(0.140) 

Labor –0.087 
(0.083) 

–0.129 
(0.109) 

–0.041 
(0.139) 

–0.049 
(0.122) 

–0.052 
(0.092) 

–0.003 
(0.150) 

Fertilizer 0.326*** 
(0.101) 

0.493*** 
(0.188) 

0.167 
(0.228) 

0.286* 
(0.150) 

0.209* 
(0.108) 

–0.078 
(0.181) 

Irrigation 0.197** 
(0.080) 

0.011 
(0.139) 

–0.186 
(0.162) 

0.074 
(0.115) 

0.224*** 
(0.090) 

0.150 
(0.140) 

Other 
expenses 

0.122*** 
(0.028) 

0.119** 
(0.048) 

–0.003 
(0.051) 

0.093 
(0.067) 

0.130*** 
(0.044) 

0.037 
(0.076) 

Intercept 4.830*** 
(0.506) 

2.704** 
(1.005) 

-2.126* 
(1.125) 

4.892*** 
(0.928) 

3.486*** 
(0.761) 

-1.407 
(1.200) 

Other 
controls Included Included Included Included Included Included 

Sample size 1110 1238  990 1358  
P-value        
H0: underidentified .000 .000  .000 .000  
H0: jointly 

insignificant .000 .000  .000 .000  

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10%. 

Second, our main results are also robust against different thresholds and timing of violent events 
measured. Table 9 replicates the IPW-GMM result in Table 5, but using 33 and 67 percentiles of the 
intensity of violent events to split the samples, instead of a 50 percentile done in Table 5. The main 
results still hold; regardless of the thresholds used, coefficients for capital are statistically significantly 
greater among samples facing more violent events. At the same time, intercepts are not statistically 
significantly different, suggesting that differences in factor coefficients are more dominant 
components of technology changes, as in Table 5. 
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Table 9. Robustness checks for Table 5 using different thresholds 
Variables (a) (b) (c)  (d) (e) (f) 

Thresholds Sample split by 33 percentiles  
of the number of violent events 

Sample split by 67 percentiles  
of the number of violent events 

Samples 

Less violent 
events 
(below 

median) 

More violent 
events 
(above 

median) 

Statistical 
significance 

of 
differences  
(= (b) – (a)) 

Less violent 
events 
(below 

median) 

More violent 
events 
(above 

median) 

Statistical 
significance 

of 
differences 
(= (e) – (d)) 

Labels Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Capital –0.005 
(0.057) 

0.130*** 
(0.042) 

0.135** 
(0.068) 

0.067 
(0.046) 

0.164*** 
(0.057) 

0.097* 
(0.051) 

Land 0.743*** 
(0.070) 

0.772*** 
(0.050) 

0.030 
(0.087) 

0.740*** 
(0.043) 

0.745*** 
(0.080) 

0.005 
(0.089) 

Labor –0.018 
(0.046) 

0.037 
(0.025) 

0.055 
(0.050) 

0.016 
(0.027) 

0.013 
(0.033) 

–0.003 
(0.044) 

Fertilizer 0.005 
(0.028) 

0.046*** 
(0.015) 

0.042 
(0.033) 

0.035** 
 (0.016) 

0.080*** 
(0.027) 

0.044 
(0.032) 

Irrigation 0.033 
(0.062) 

0.116* 
(0.060) 

0.083 
(0.093) 

0.118*** 
(0.045) 

0.177** 
(0.075) 

0.059 
(0.089) 

Other expenses 0.193** 
(0.076) 

0.110** 
(0.051) 

–0.084 
(0.088) 

0.113*** 
(0.041) 

0.187*** 
(0.060) 

0.074 
(0.070) 

Intercept 3.237*** 
(1.313) 

4.183*** 
(0.865) 

0.946 
(1.511) 

4.572** 
(0.723) 

1.689 
(1.267) 

-2.883** 
(1.465) 

Other controls Included Included Included Included Included Included 
Sample size 989 1359  1602 746  
P-value        
H0: 

underidentified 
.000 .000  .000 .000  

H0: jointly 
insignificant 

.000 .000  .000 .000  

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10%. 

 We also checked whether the results differ if we focus on the violent events during the monsoon 
production season (i.e., July through October for Upper Myanmar and June through October for the 
rest of the country) instead of all year round (Table 10). The results are again consistent with Table 
5 that coefficients for capital are statistically significantly greater among the sample facing more 
violent events.  
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Table 10. Robustness checks for Table 5 focusing on violent events in monsoon rice 
production months 

Variables (a) (b) (c) 

Samples 
Less violent events 

(below median) 
More violent 

events (above 
median) 

Statistical 
significance of 

differences  
(= (b) – (a)) 

Labels Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Capital –0.024 
(0.061) 

0.124*** 
(0.047) 

0.148* 
(0.083) 

Land 0.741*** 
(0.070) 

0.646*** 
(0.061) 

–0.095 
(0.098) 

Labor 0.005 
(0.031) 

0.010 
(0.029) 

0.005 
(0.044) 

Fertilizer 0.003 
(0.020) 

0.040* 
(0.023) 

0.036 
(0.031) 

Irrigation 0.120 
(0.087) 

–0.006 
(0.068) 

–0.126 
(0.123) 

Other expenses 0.160** 
(0.072) 

0.236*** 
(0.055) 

0.076 
(0.098) 

Intercept 2.801** 
(1.298) 

1.984* 
(1.035) 

–0.817 
(1.623) 

Other controls 
 

Included Included Included  

Sample size 1138 1210  
P-value    
H0: underidentified .000 .000  
H0: jointly insignificant .000 .000  

Source: Authors. *** 1% ** 5% * 10% 

Our main results are also generally robust in both Lower and Upper Myanmar. Table 11 shows 
the IPW-GMM results in Table 5 separately for the Lower Myanmar the Upper Myanmar region. In 
both regions, the coefficients for capital are statistically significantly greater in regions that 
experienced more violent events in 2021.   
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Table 11. Robustness checks for Table 6 differentiated by Lower and Upper Myanmar 
Variables (a) (b) (c) (d) (e) (f) 
Regions Lower Myanmar Upper Myanmar 

Samples 

Less 
violent 
events 
(below 

median) 

More 
violent 
events 
(above 

median) 

Statistical 
significanc

e of 
differences 
(= (b) – (a)) 

Less 
violent 
events 
(below 

median) 

More 
violent 
events 
(above 

median) 

Statistical 
significanc

e of 
differences 
(= (e) – (d)) 

Labels Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Capital 0.037 
(0.056) 

0.532*** 
(0.077) 

0.495*** 
(0.098) 

0.024 
 (0.052) 

0.263*** 
(0.095) 

0.238** 
(0.103) 

Land 0.763*** 
(0.079) 

0.438*** 
(0.168) 

–0.325 
(0.179) 

0.600*** 
 (0.078) 

0.873*** 
(0.115) 

0.273** 
(0.135) 

Labor 0.021 
(0.037) 

0.364*** 
(0.055) 

0.343*** 
(0.065) 

0.052 
 (0.043) 

–0.031 
(0.052) 

–0.083 
(0.061) 

Fertilizer 0.065** 
(0.029) 

0.058 
(0.039) 

–0.008 
(0.052) 

0.031 
 (0.019) 

0.063** 
(0.039) 

0.031 
(0.045) 

Irrigation 0.001 
(0.078) 

0.280** 
(0.123) 

0.246 
(0.155) 

0.117 
 (0.075) 

–0.046 
(0.110) 

–0.162 
(0.137) 

Other expenses 0.065 
(0.081) 

0.288* 
(0.152) 

0.223 
(0.177) 

0.214*** 
 (0.062) 

0.062 
(0.096) 

–0.153 
(0.121) 

Intercept 7.690*** 
(1.501) 

4.595 
(4.050) 

-3.095 
(4.506) 

3.131*** 
 (1.077) 

0.437 
(2.369) 

-2.694 
(2.525) 

Other controls 
 Included Included Included Included Included Included 

Sample size 545 514  656 633  
P-value       
H0: underidentified .000 .000  .000 .000  
H0: jointly insignificant .000 .000  .000 .000  

Source: Authors. *** 1% ** 5% * 10% 
 

Similarly, Table 12 shows the IPW-GMM results in Table 7 separately for the Lower Myanmar 
and the Upper Myanmar cropping systems. Here, the statistical significance of the difference is 
somewhat weak, possibly due to the smaller sample size. However, a qualitatively similar difference 
is still observed. Coefficients for capital are statistically significant for the sample with no extension 
access (0.107 in Lower Myanmar) and (0.167 in Upper Myanmar). In contrast, these coefficients for 
the sample with extension access are statistically insignificant (0.047 and 0.031, respectively). These 
findings are consistent with the hypothesis that the observed effects of extension access (Table 7) 
generally hold in both Lower Myanmar and Upper Myanmar cropping systems.   
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Table 12. Robustness checks of Table 7 differentiated by Lower and Upper Myanmar 
Variables (a) (b) (c) (d) (e) (f) 
Regions Lower Myanmar Upper Myanmar 

Samples 

Having 
extension 

access 

No 
extension 

access 

Statistical 
significanc

e of 
differences 
(= (b) – (a)) 

Having 
extension 

access 

No 
extension 

access 

Statistical 
significanc

e of 
differences 
(= (e) – (d)) 

Labels Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Capital 0.022 
(0.051) 

0.100* 
(0.053) 

0.078 
(0.076) 

–0.002 
 (0.080) 

0.185* 
(0.102) 

0.186* 
(0.110) 

Land 0.715*** 
(0.053) 

0.750*** 
(0.074) 

0.035 
(0.086) 

0.752*** 
 (0.122) 

0.723*** 
(0.112) 

–0.029 
(0.185) 

Labor –0.004 
(0.041) 

0.041 
(0.035) 

0.045 
(0.053) 

0.031 
 (0.049) 

–0.005 
(0.057) 

–0.036 
(0.083) 

Fertilizer 0.032 
(0.033) 

0.055** 
(0.026) 

0.023 
(0.041) 

0.034 
 (0.038) 

–0.007 
(0.034) 

–0.041 
(0.053) 

Irrigation 0.048 
(0.082) 

0.058 
(0.064) 

0.015 
(0.108) 

0.090 
 (0.091) 

0.137 
(0.102) 

0.047 
(0.148) 

Other expenses 0.113 
(0.076) 

0.110 
(0.086) 

–0.003 
(0.111) 

0.206** 
 (0.097) 

0.220*** 
(0.085) 

0.014 
(0.137) 

Intercept 6.939*** 
(1.592) 

6.430*** 
(1.747) 

–0.509 
(2.185) 

3.026* 
 (1.737) 

2.042 
(1.550) 

–0.984 
(2.403) 

Other controls 
 

Included Included Included Included Included Included 

Sample size 526 533  669 627  
P-value       
H0: underidentified .000 .000  .000 .000  
H0: jointly insignificant .000 .000  .000 .000  

Source: Authors. *** 1% ** 5% * 10% 

 Table 13 shows the magnitude of various factors associated with the change in Malmquist TFP 
indicators, estimated through regression (7). One standard deviation increase in the number of 
violent events is associated with a 1.5 percentage point lower growth rate of the Malmquist TFP 
indicator. Based on the average changes in the number of violent events in the sample between 
2020 and 2021, the results translate into approximately a 3.6 percent lower TFP due to the increases 
in violent events in Myanmar between 2020 and 2021. The estimated magnitude is quite similar to 
the estimate of 3.5 percent based on the short-run production function mentioned above (Table 4).   

 Coefficients for other variables suggest that the Malmquist TFP indicator is negatively affected 
by more extraordinary temperature anomalies, pests or disease incidence, as expected. The 
estimated constant term indicates that, in the absence of all these shocks (including violent events), 
Malmquist TFP would have increased by 1.9 percent on average between 2020 and 2021 in 
Myanmar.  
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Table 13. Correlates of Malmquist TFP growth rates (effects of one-standard deviation 
changes) 

Variables Coef. 
(std.err) 

Violent events –0.015* 
(0.008) 

COVID case 0.009 
(0.008) 

Rainfall anomalies 0.010 
(0.008) 

Temperature anomalies –0.020** 
(0.008) 

Pests or disease (yes = 1) –0.031*** 
(0.007) 

Animal damage (yes = 1) –0.001 
(0.007) 

Intercept  0.019*** 
(0.007)  

Sample size 2,348 
p-value (H0: jointly insignificant) .000 

Source: Authors’ estimations. *** 1% ** 5% * 10% 

6. CONCLUSIONS 
The relationship between conflict and agricultural production technologies has important implications 
for agricultural productivity in fragile settings, where food availability and food security problems are 
often severe. Understanding such a relationship is particularly important in Myanmar, which has 
experienced a significant rise in conflict following a military coup in 2021. This study assesses 
whether the increase in violent events associated with the political crisis in Myanmar in 2021 affected 
the underlying rice production function that represents rice production technologies, using nationally 
representative panel data of rice farmers in 2020 and 2021, from before and after the coup.  

We find that increases in violent events led to changes in the shape of the rice production 
functions. Specifically, increases in violent events are associated with reduced total factor 
productivity (TFP) and an increased output elasticity of agricultural capital proxied by the number of 
different types of agricultural equipment owned, indicating more negative effects of the conflict for 
poorer farmers. Reduced access to extension services has been a potential explanation for such 
changes. Increases in violent incidents in the township are significantly associated with reduced 
access to extension services, contributing to reduced TFP and increased output elasticity of 
agricultural capital. These results consistently hold for Cobb-Douglas and translog production 
function forms, between Lower Myanmar and Upper Myanmar, and for alternative definitions of the 
intensity of violent events. The results also hold for short-run and long-run production functions that 
address a more extensive set of endogeneity issues.   

Our results imply that increases in violent events in Myanmar since 2021 have lowered the TFP 
in rice production and transformed the prevailing rice production technologies into being more 
dependent on agricultural capital owned by the farms. In other words, rice production technologies 
are likely to have changed in favor of farmers owning more agricultural capital but against farmers 
with less agricultural capital. We also find that lower mechanization service fees partly mitigate these 
effects. Reduced access to extension services might have driven such changes, which would 
otherwise compensate resource-poor farmers with human capital and skills that can potentially 
substitute agricultural capital. The absence of agricultural capital may remain a binding constraint for 
these farmers to the extent that the credit market is imperfect (so that greater output elasticity does 
not induce sufficient investments in agricultural capital), and a high incidence of violent events 
disrupts access to agricultural equipment and cheap mechanization service provision.    



27 
 

Our results have several policy implications. Containing and reducing violent events is critical in 
restoring the TFP of rice production. Assuring access to extension services could compensate for 
this loss and boost farmers' productivity with less production capital. Direct support to restore 
agricultural extension services, including in pluralistic ways (by mobilizing both the public and private-
sector extension services), can also have similar benefits. Supports to improve access to credit and 
agricultural equipment can help more farmers adjust more efficiently to the changes in rice 
production function associated with increased violent events. Finally, assuring access to affordable 
mechanized service providers might mitigate the lack of ownership of machinery.  
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APPENDIX 
Table 14. Probit regression results on factors associated with violent events and receiving 

no access to extension services (expressed as marginal effects on probability evaluated 
at sample means)  

Variables Dependent variables 
 Likelihood of being 

in township with 
violent events 

exceeding median 

Likelihood of 
receiving no 

extension visits 

Intensity of violent events in the township  0.026**  
Age 0.001* –0.002*** 
Gender (female = 1) 0.020 0.108*** 
Education (above standard 4 = 1) 0.019 –0.118*** 
Household member – adult male –0.004 –0.004 
Household member – adult female 0.007 0.010 
Household member – children –0.006 0.012 
Farm size owned in ha (natural log) –0.004 –0.010 
Asset (principal component) –0.010** –0.042*** 
Nonfarm income (yes = 1) 0.025* –0.013 
Nighttime light (index) 0.018 0.025 
COVID case (natural log) 3.698*** -3.444 
Distance to input market (hours) 0.021** 0.034*** 
Mechanization fees 0.000 –0.003 
Soil alkalinity (pH) 0.027 0.009 
Organic contents (g / kg of soil) 0.045*** 0.029*** 
Soil texture (% fine) 0.810*** 0.186 
Salinity (deciSiemens per metre) 0.210*** –0.081*** 
Sodicity (% of soil) –0.175*** 0.008*** 
Poor drainage (%) –0.055* –0.053 
Pests or disease (yes = 1) 0.044** –0.095*** 
Animal damage (yes = 1) –0.026 –0.033 
Historical average rainfall 0.001*** –0.010 
Historical average temperature 0.004 –0.006 
State dummies Included Included 
Sample size 2,348 2,348 
p-value (H0: jointly insignificant) .000 .000 

Source: Authors. *** 1% ** 5% * 10%. 
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Table 15. Short-run production function estimations with different sources of extension 
services 

Variables (a) (b) (c) (d) 
Sources of extension services Public 

sector 
Private 
sector 

NGOs Cellphone 
app 

Labels Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Coef. 
(std.err) 

Capital –0.006 
(0.022) 

0.013 
(0.020) 

0.004 
(0.024) 

–0.015 
(0.026) 

Capital × No extension 0.025* 
(0.015) 

0.002 
(0.013) 

0.010 
(0.015) 

0.032 
(0.028) 

Land 0.469*** 
(0.056) 

0.500*** 
(0.056) 

0.500*** 
(0.053) 

0.516*** 
(0.058) 

Land × No extension 0.019 
(0.026) 

–0.020 
(0.022) 

–0.015 
(0.027) 

–0.039 
(0.038) 

Labor –0.061 
(0.035) 

–0.054 
(0.035) 

–0.066 
(0.046) 

–0.080 
(0.046) 

Labor × No extension 0.035** 
(0.017) 

0.026* 
(0.016) 

0.035* 
(0.020) 

0.056** 
(0.027) 

Fertilizer 0.067*** 
(0.014) 

0.074*** 
(0.015) 

0.089*** 
(0.019) 

0.032 
(0.020) 

Fertilizer × No extension –0.040** 
(0.015) 

–0.051*** 
(0.017) 

–0.058*** 
(0.019) 

0.003 
(0.022) 

Irrigation 0.003 
(0.017) 

0.018 
(0.017) 

–0.030 
(0.021) 

0.017 
(0.019) 

Irrigation × No extension 0.005 
(0.013) 

–0.015 
(0.013) 

0.037** 
(0.017) 

–0.013 
(0.018) 

Other expenses 0.024 
(0.025) 

0.012 
(0.025) 

–0.014 
(0.032) 

–0.015 
(0.026) 

Other expenses × No extension 0.017 
(0.023) 

0.033* 
(0.020) 

0.055** 
(0.026) 

0.019 
(0.036) 

Intercept 7.060*** 
(0.016) 

7.046*** 
(0.015) 

7.083*** 
(0.017) 

7.015*** 
(0.022) 

Intercept × No extension –0.013 
(0.015) 

0.006 
(0.015) 

–0.041** 
(0.017) 

0.043 
(0.027) 

Farmer fixed effects 
 

Included Included Included Included 

Other controls 
 

Included Included Included Included 

Sample 4,696 4,696 4,696 4,696 
p-value (H0: variables jointly insignificant) .000 .000 .000 .000 

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10% 
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Table 16. Short-run production function estimations with mechanization fees 
Variables (a) (b) (c) (d) 

Types of shocks Violent events Extension 
Regions Myanmar Lower  Upper  Myanmar 
Labels Coef. 

(std.err) 
Coef. 

(std.err) 
Coef. 

(std.err) 
Coef. 

(std.err) 
Capital 0.010 

(0.025) 
0.001 
(0.028) 

0.028 
(0.048) 

–0.008 
(0.028) 

Capital × Shocks 0.027 
(0.018) 

0.063** 
(0.026) 

0.013 
(0.025) 

0.033 
(0.025) 

Capital × Shocks × Mechanization Fees 0.018 
(0.040) 

0.089** 
(0.044) 

–0.027 
(0.064) 

0.016* 
(0.009) 

Land 0.509*** 
(0.034) 

0.571*** 
(0.053) 

0.528*** 
(0.049) 

0.503*** 
(0.073) 

Land × Shocks –0.003 
(0.020) 

–0.045 
(0.031) 

0.025 
(0.034) 

0.005 
(0.033) 

Land × Shocks × Mechanization Fees 0.013 
(0.045) 

–0.100** 
(0.046) 

0.153* 
(0.082) 

0.024 
(0.021) 

Labor –0.030 
(0.028) 

0.007 
(0.035) 

–0.079 
(0.043) 

–0.062 
(0.047) 

Labor × Shocks –0.003 
(0.020) 

0.007 
(0.025) 

–0.010 
(0.029) 

0.036 
(0.025) 

Labor × Shocks × Mechanization Fees 0.013 
(0.045) 

0.065 
(0.046) 

–0.091 
(0.080) 

0.001 
(0.012) 

Fertilizer 0.044*** 
(0.014) 

0.054*** 
(0.015) 

0.032 
(0.026) 

0.058*** 
(0.019) 

Fertilizer × Shocks –0.027 
(0.021) 

0.014 
(0.032) 

–0.013 
(0.031) 

–0.029 
(0.023) 

Fertilizer × Shocks × Mechanization Fees 0.024 
(0.037) 

0.112*** 
(0.042) 

–0.041 
(0.066) 

–0.007 
(0.013) 

Irrigation 0.005 
(0.017) 

–0.020 
(0.022) 

0.030 
(0.026) 

0.015 
(0.023) 

Irrigation × Shocks –0.008 
(0.018) 

–0.005 
(0.023) 

–0.017 
(0.025) 

–0.014 
(0.020) 

Irrigation × Shocks × Mechanization Fees –0.039 
(0.041) 

–0.011 
(0.046) 

–0.024 
(0.064) 

0.011 
(0.008) 

Other expenses 0.004 
(0.010) 

–0.020 
(0.012) 

0.034* 
(0.019) 

–0.003 
(0.025) 

Other expenses × Shocks 0.013 
(0.020) 

0.029 
(0.026) 

–0.019 
(0.027) 

0.035 
(0.027) 

Other expenses × Shocks × Mechanization Fees –0.047 
(0.033) 

–0.084** 
(0.037) 

0.001 
(0.053) 

–0.024*** 
(0.009) 

Intercept 7.017*** 
(0.025) 

7.164*** 
(0.028) 

6.901*** 
(0.052) 

7.050*** 
(0.022) 

Intercept × Mechanization Fees –0.036* 
(0.021) 

–0.013 
(0.026) 

–0.005 
(0.050) 

0.000 
(0.020) 

Intercept × Shocks 0.037 
(0.031) 

–0.002 
(0.038) 

0.017 
(0.052) 

–0.007 
(0.024) 

Intercept × Shocks × Mechanization Fees 0.068 
(0.051) 

0.026 
(0.057) 

0.026 
(0.099) 

–0.018 
(0.017) 

Farmer fixed effects Included Included Included Included 
Other controls Included Included Included Included 
Sample 4,696 2,528 2,168 4,696 
p-value (H0: variables jointly insignificant) .000 .000 .000 .000 

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10% 
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Table 17. Long-run estimates of Cobb-Douglas production functions (differentiated by the 
median of violent events) 

Variables (a) (b) (c) 

Samples 
Less violent 

events (below 
median) 

More violent 
events (above 

median) 

Statistical 
significance of 

differences 
(= (b) – (a)) 

Labels Coef. (std.err) Coef. (std.err) Coef. (std.err) 
Capital 0.139 

(0.091) 
0.025 
(0.107) 

0.114 
(0.119) 

Capital × Mechanization 
fee 

–0.143 
(0.141) 

0.118 
(0.074) 

0.261* 
(0.147) 

Land 0.725*** 
(0.054) 

0.875*** 
(0.044) 

0.150** 
(0.069) 

Land × Mechanization fee 0.130** 
(0.065) 

–0.021 
(0.041) 

–0.151** 
(0.073) 

Labor 0.056 
(0.035) 

0.016 
(0.032) 

–0.039 
(0.050) 

Labor × Mechanization 
fee 

–0.062* 
(0.036) 

0.011 
(0.029) 

0.073 
(0.046) 

Fertilizer 0.073*** 
(0.021) 

0.050*** 
(0.017) 

–0.023 
(0.018) 

Fertilizer × Mechanization 
fee 

–0.017 
(0.029) 

–0.002 
(0.016) 

0.015 
(0.027) 

Irrigation 0.134** 
(0.055) 

0.130* 
(0.071) 

0.004 
(0.097) 

Irrigation × Mechanization 
fee 

0.042 
(0.091) 

–0.034 
(0.067) 

–0.076 
(0.104) 

Other expenses 0.022* 
(0.012) 

0.032* 
(0.019) 

–0.010 
(0.023) 

Other expenses × 
Mechanization fee 

–0.023 
(0.025) 

0.014 
(0.015) 

0.037 
(0.027) 

Intercept 4.698*** 
(0.915) 

2.789*** 
(0.831) 

-1.909* 
(1.119) 

Mechanization fee -5.996*** 
(0.244) 

-5.466*** 
(0.159) 

0.530** 
(0.269) 

Other controls 
 

Included Included Included 

Sample size 1110 1238  
P-value     
H0: underidentified .000 .000  
H0: model insignificant .000 .000  

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10% 
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Table 18. Long-run estimates of Cobb-Douglas production functions (differentiated by the 
access to extension services) 

Variables (a) (b) (c) 

Samples 
Having  

extension 
access 

No  
extension 

access 

Statistical 
significance of 

differences 
(= (b) – (a)) 

Labels Coef. (std.err) Coef. (std.err) Coef. (std.err) 
Capital 0.073 

(0.084) 
0.179** 
(0.073) 

0.107 
(0.096) 

Capital × Mechanization 
fee 

–0.153 
(0.115) 

0.121* 
(0.074) 

0.274** 
(0.124) 

Land 0.683*** 
(0.062) 

0.746*** 
(0.062) 

0.063 
(0.081) 

Land × Mechanization fee 0.115 
(0.090) 

–0.057 
(0.061) 

–0.172* 
(0.103) 

Labor 0.055* 
(0.031) 

0.011 
(0.029) 

–0.044 
(0.044) 

Labor × Mechanization 
fee 

–0.049 
(0.031) 

0.015 
(0.030) 

0.063 
(0.044) 

Fertilizer 0.070*** 
(0.022) 

0.036*** 
(0.018) 

–0.033 
(0.021) 

Fertilizer × Mechanization 
fee 

–0.026 
(0.027) 

–0.006 
(0.016) 

0.020 
(0.027) 

Irrigation 0.107* 
(0.063) 

0.126** 
(0.050) 

0.019 
(0.088) 

Irrigation × Mechanization 
fee 

0.042 
(0.074) 

–0.037 
(0.063) 

–0.079 
(0.090) 

Other expenses 0.090 
(0.061) 

0.169*** 
(0.054) 

0.079 
(0.080) 

Other expenses × 
Mechanization fee 

–0.015 
(0.102) 

0.044 
(0.057) 

0.059 
(0.110) 

Intercept 4.927*** 
(0.914) 

3.302*** 
(0.794) 

-1.626 
(1.263) 

Intercept × Mechanization 
fee 

0.194 
(1.180) 

–0.586 
(0.680) 

–0.780 
(1.293) 

Other controls 
 

Included Included Included 

Sample size 990 1358  
P-value     
H0: underidentified .000 .000  
H0: model insignificant .000 .000  

Source: Authors’ estimations based on IFPRI (2022). *** 1% ** 5% * 10% 
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