

On-Farm Trials on Salinity and Submergence Tolerant Rice Varieties in the Gulf of Mottama, Myanmar

Bachelor's Thesis by Benjamin Pablo Jungblut Submitted to Christoph Studer Zollikofen, 1.2.2018

Bern University of Applied Sciences - BFH School of Agricultural, Forest and Food Sciences HAFL

Declaration of independent authorship and granting of usage rights

I hereby declare that

- I have read and understood the 'Guidelines regarding the handling of plagiarism at BFH' and am aware of the consequences of not respecting these rules;
- I have written this piece of assessed coursework in compliance with these principles;
- this piece of assessed coursework is my own work and has not been written for me, in whole or in part, by any other person(s);
- I accept that my piece of assessed coursework will be checked by plagiarism recognition software and subsequently stored in the BFH database;
- I grant HAFL free-of-charge, unlimited, non-exclusive usage rights to my piece of assessed coursework.

Place, date

Information regarding the use of assessed coursework submitted by students at the School of Agricultural, Forest and Food Sciences HAFL

All rights to term papers, minor reports and bachelor or master theses are in the ownership of the author of the assessed coursework. However, HAFL has free-of-charge, unlimited, non-exclusive usage rights to the assessed coursework of its students.

Term papers, minor reports and bachelor or master theses are constituent parts of the educational programme and are independently authored. HAFL disclaims any responsibility for possible mistakes in these pieces of assessed coursework and is not liable for any possible consequent damage.

Zollikofen, December 2015 School Management

Table of Contents

Ab	ostract	V
1	Introduction	1
2	Current State of Research	2
	2.1 Salt tolerance	2
	2.1.1 Importance of Salinity in Rice Production	2
	2.1.2 Effects of Salinity on the Rice Plant	2
	2.1.3 Mechanisms of Salinity Tolerance in Rice	2
	2.1.4 Breeding for Salinity Tolerant Rice Varieties	3
	2.2 Flooding Tolerance	4
	2.2.1 Importance of Flooding in Rice Production	4
	2.2.2 Effects of Flooding on the Rice Plant	4
	2.2.3 Mechanisms for Flooding Tolerance in Rice	5
	2.2.4 Breeding for Submergence Tolerant Rice Varieties	6
	2.3 Deltas and Coastal Areas	6
	2.4 Myanmar	7
	2.4.1 Rice in Myanmar	7
	2.4.2 The Gulf of Mottama	9
3	Material and Methods	10
	3.1 Material	10
	3.1.1 Site/Time-period	10
	3.1.2 Varieties	11
	3.1.3 Farmers'-Practice	11
	3.2 Methods	12
	3.2.1 Trial Design	12
	3.2.2 Data Collection	12
	3.2.3 Harvest	13
	3.2.4 Farmers opinion and demonstration plot	13
	3.2.5 Statistical analysis	14
4	Results and Discussion	15
	4.1 Nursery	15
	4.1.1 Emergence	15
	4.1.2 Plant Height	17
	4.2 Growth Parameters	19
	4.2.1 Plant Height	19
	4.2.2 Number of Tillers	22
	4.2.3 Leaf Colour Index	24
	4.3 Harvest	27
	4.3.1 Number of Hills and Plant Height	27
	4.3.2 Number of Tillers and Panicles	30
	4.3.3 Panicle Length and Number of Spikelets	32
	4.3.4 Yield	34
	4.4 Farmer Opinion	36
	4.4.1 Nursery	36
	4.4.2 Grading and Yield Estimate Before Harvest	37
	4.4.3 Demonstration Plot	39
5	Discussion	41
6	Conclusions	43
7	References	44
Ac	knowledgements	47

Jungblut B

List of Abbreviations

- 0T Zero Treatment, Pawsanyin
- BANCA Biodiversity and Nature Conservation Association
- DAR Department of Agricultural Research
- DOA Department of Agriculture
- DOAI Department of Agriculture and Irrigation
- F1 Flooding Tolerant Variety Number 1, Swarna Sub1
- F2 Flooding Tolerant Variety Number 2, Mekyut
- F3 Flooding Tolerant Variety Number 3, IR-84649.1295.30
- HIS Helvetas Swiss Intercooperation
- IRRI International Rice Research Institute
- IUCN International Union for Conservation of Nature
- L1 Local Variety Number 1, Baygyar
- L2 Local Variety Number 2, Kyarpyan
- L3 Local Variety Number 3, Taungpyan
- NAG Networck Activities Group
- S1 Salt Tolerant Variety Number 1, Pyimyanmarsein
- S2 Salt Tolerant Variety Number 2, IR-11T255
- S3 Salt Tolerant Variety Number 3, Sinthwelatt

List of Tables

Table 1 Outcomes of CLCMGoMP (Source: Adapted from HSI MYanmar 2015,4)1
Table 2 Effects of Submergence and Desubmergence on the Rice Plant (Source: Adapted from Tamang and Fukao 2015) 5
Table 3 Levels of Salinity in the Different Trial-Plots
Table 4 Varieties Selected for the Trial
Table 5 Significant Differences: Boyargyi - Emergence 15
Table 6 Significant Differences Zokekali - Emergence 16
Table 7 Significant Differences Boyargyi - Plant Height
Table 8 Significant Differences Zokekali - Plant Growth
Table 9 Significant Differences Boyargyi - Leaf Colour Index 24
Table 10 Significant Differences Zokekali - Leaf Colour Index 25
Table 11 Significant Differences Boyargyi - Number of Hills and Plant Height
Table 12 Significant Differences Zokekali - Number of Hills and Plant Height
Table 13 Significant Differences Boyargyi - Number of Tillers and Panicles
Table 14 Significant Differences Zokekali - Number of Tiller and Panicles
Table 15 Significant Differences Boyargyi - Panicle Length and Number of Spikelets
Table 16 Significant Differences Zokekali - Panicle Length and Number of Spikelets
Table 17 Significant Differences Boyargyi - Yield 34
Table 18 Significant Differences Zokekali - Yield 35
Table 19 Nursery Grading Results of Both Villages 36
Table 20 Farmers Opinion on Improvements Regarding Soil Preparation, Transplanting by Hand andWater Managment38
Table 21 Average Yields of the Trial compared to Yields Obtained in the Demonstration Plot40

List of Figures

Figure 2 Transplanting with Traditional Stick in Zokekali	.11
Figure 3 Layout of Nursery Plots with Sample Plots	.12
Figure 4 Layout Plant Selection for Data Collection	.12
Figure 7 Separation of Grains and Stems after Harvest, Boyargyi	.13
Figure 8 Grading of Trial-Plot by Farmers, Boyargyi	.13
Figure 9 Nursery in Zokekali, Empty Plots = F3 in the Front, F2 in the Back	.15
Figure 10 Emergence of F1, F3, L1, L2, S1 and OT, Boyargyi	
Figure 11 Broadcasting Seeds, Boyargyi	.16
Figure 12 Emergence of F1, F3, L1, L2, S1 and OT, Zokekali	.17
Figure 13 Broadcasting Seeds, Zokekali	.17
Figure 14 Average Plant Height before Transplanting	
Figure 15 Plot Number 1, 3 Days after Peak-Flood, Boyargyi	.19
Figure 16 Evolution of Plant Height F1, F2. L1, L2, S1, S3 and OT, Boyargyi	.20
Figure 17 Damage Caused by Rodents with Plots of S1 and S2 on the Left and Centre Front, F1 in th Central Plot in the Backline	
Figure 19 Damage by Rodents Plot Number 2, F1, Boyargyi	
Figure 20 Evolution of Number of Tillers F1, F2, L1, L2, S1, S3 and OT, Boyargyi	
Figure 21 Evolution of Number of Tillers F1, F2, L1, L2, S1, S2 and OT, Zokekali	
Figure 22 Rodent Damage, Plot 2, S1, Zokekali	
Figure 23 Evolution of Leaf Colour Index F3, L2, S1 and OT, Boyargyi Figure 24 Plot Number 5 one Week after Peak Flood, Boyargyi	
Figure 25 Rodent Damage Plot Number 5, F1, Zokekali	
Figure 26 Evolution of Leaf Colour Index F1, L1, L3, S1, S2 and OT, Zokekali	
Figure 27 Heavily Reduced Plant Number after Flood in Plot 5, F1, Boyargyi	
Figure 28 Boyargyi - Average Plant Height	
Figure 29 Boyargyi – Average Number of Hills	
Figure 30 Zokekali - Number of Hills	
Figure 31 Zokekali - Plant Height	
Figure 32 Plant with Low Competition and High Tiller Count	
Figure 33 Boyargyi - Number of Tilers and Panicles	
Figure 34 Zokekali - Number of Tillers and Panicles	
Figure 35 Damage to Panicles Caused by Insects, Boyargyi	
Figure 36 Boyargyi - Panicle Length	
Figure 37 Boyargyi - Number of Spikelets	
Figure 38 Zokekali - Panicle Length	
Figure 39 Zokekali - Number of Spikelets	
Figure 40 Rodent Damage Plot Number 3, S2, Zokekali	
Figure 41 Boyargyi - Yield	
Figure 42 Zokekali - Yield	
Figure 43 Farmer Grading of Nursery Plots, Zokekali	
Figure 44 Nursery Overall Impression Grade Average Zokekali	
Figure 45 Nursery Overall Impression Grade Average Boyargyi	
Figure 46 Average Grade Plot Number 3	
Figure 47 Average Grade Demonstration Plot	
rigure in meruge druce bemonstration not	

Figure 48 Average Estimated Yield Plot Number 3	37
Figure 49 Average Estimated Yield Demonstration Plot	37
Figure 50 Demonstration Plot 14 Weeks after Transplanting	39
Figure 53 Plot Number 1, Four Weeks After Flood, Boyargyi	41
Figure 51 Plot Number 1, One Week After Flood, Boyargyi	41
Figure 55 Snail in Zokekali	42
Figure 56 Damage by Ruminants in Boyargyi	42
Figure 57 Grading of Demonstration Plots with Farmers from Different Villages	42

Abstract

JUNGBLUT, Benjamin Pablo. On-Farm Trials on Salinity and Flooding Tolerant Rice Varieties in the Gulf of Mottama Myanmar

The productivity of rice farmers in the Gulf of Mottama is endangered by salt-water intrusion, that causes salinity levels to rise in the soil, and flooding, caused by erratic rainfall. This paper aims to assess the performance of different varieties in the conditions present in the Gulf of Mottama and to recommend varieties that might improve the yields in this area. To do this, trials were established in cooperation with the Community-Led Coastal-Management in the Gulf of Mottama Project (CLCMGoMP). Ten varieties were selected and grown on farmer fields in two project-villages (Boyargyi – Kyaikhto Township; Zokekali – Bilin Township). Three salt tolerant varieties were selected alongside three flooding tolerant and three local genotypes. Pawsanyin, the variety that is usually cultivated in those two villages, was used as a zero treatment. This would allow for a comparison of the newly introduced varieties to the status-quo.

Boyargyi was struck by a flood reaching peak levels of over 1m above field-level only 2 weeks after transplanting. Zokekali on the other hand was mostly affected by salinity and rodents. Various differences regarding growth and yield parameters were observed, but it is difficult to draw conclusions from this data, as it is not detailed enough to clearly relate values to biotic or abiotic stresses. Some new varieties with multiple stress resistances (salinity/flooding; salinity/drought) but also complex flooding tolerance (tolerance to submergence as well as stagnant-flooding/partial submergence) are being or have been developed ion recent year. These varieties might be interesting as both villages showed a combination of salinity and flooding issues.

Sinthwelatt, one of the salt tolerant varieties, performed best throughout the trials and was able to average higher yields than the local varieties. Some farmers expressed concerns regarding the eating-properties of Sinthwelatt, which must be considered before promoting its adoption. A demonstration plot that was establish in cooperation with an innovative farmer from Boyargyi enabled the observation of the varieties in more favourable conditions than in the trial fields. Together with farmers from different villages the main reasons for the improved performance in the demonstration plot were defined as soil preparation/levelling, transplanting by hand and water management through drainage. Most farmers acknowledged the improvements possible through these changes in practice but also stated various issues regarding the adoption of these techniques. The main constraints mentioned were mechanisation, financing, labour, know-how and infrastructure.

Further research is needed to assess the exact influence of cultivation practice and intensity to evaluate the optimal approach. Furthermore, the feasibility of changes in cultural practice need to be considered before promoting a certain agricultural system.

Keywords: Myanmar, Gulf of Mottama, Rice, Salinity, Flooding, Submergence, On-Farm Trials

1 Introduction

The livelihoods of the coastal communities in the Gulf of Mottama (Myanmar) are being endangered by reclining fish catches and climate change. These communities are highly dependent on marine resources for their income. Fishers have been reporting decreasing stocks, most probably due to illegal fishing practices that are used in the Gulf. More and more households are looking for alternative incomes outside of the fishery value-chain. Rice is the staple crop in these regions, but the productivity of fields close to the coastline is low and further threatened through increasing salt water intrusion and erratic rainfall that leads to floods that can submerge the rice plants. Most of the farmers in the coastal villages use traditional rice varieties due to lack of knowledge or access. Those varieties are moderately adapted to the conditions in the area but are usually low-yielding with a very long growth period inhibiting multiple crops in one year.

The Community-Led Coastal Management in the Gulf of Mottama Project (CLCMGOMP), implemented by Helvetas Swiss Intercoorperation (HSI), Networks Activity Group (NAG) and the International Union on Conservation of Nature (IUCN), tries to address the issues present in the Gulf from different perspectives together with a multitude of stakeholders. The projects goal is:

"The unique biodiversity of the GoM is conserved and sustainably developed in order to benefit human communities that depend on it." (HSI Myanmar 2015, 4)

This is achieved through three different outcomes, each under the lead of one of the three partners:

Table 1 Outcomes of CLCMGoMP (Source: Adapted from HSI MYanmar 2015,4)

Outcome 1 (NAG):	Benefits of sustainable fisheries management in the Gulf of Mottama are shared through effective value chains and equitable market access
Outcome 2 (HSI):	Vulnerable coastal communities have increased income and resilience through livelihood diversification and improved access to non-fisheries resources
Outcome 3 (IUCN):	The special habitats of the GoM are sustainably and equitably managed on the basis of scientific evidence through integrated local, regional and national institutions/management bodies.

The subject of this paper is situated in outcome 2 of the project. It aims at strengthening the nonfishery income by improving the performance and resilience of rice production. This is to be achieved by evaluating the performance and the applicability of three salinity and three submergence tolerant rice varieties in on-farm trials. These on-farm trials have been conducted in two villages in Mon-State (Boyargyi – Kyaikhto Township; Zokekali – Bilin Township) with five farmers in each village, comparing the newly introduced varieties to locally grown ones. The goal of this research is to show which of the tested varieties performs the best under farmer practice and whether the introduction of new stresstolerant rice varieties can improve the yield in the salt and flooding affected fields of these two villages.

The research-question of this paper is: which of the tested rice varieties are best adapted to the conditions and cultivating practice in the two selected villages and similar environments and are thus able to improve the livelihood of local communities? This will be answered by observing the plants morphology and ultimately their yield. These observations will be compared to gradings carried out by local farmers during the cropping season, to consider the preferences of the target community.

2 Current State of Research

The following chapters will summarise the current knowledge and breeding success regarding salinity and flooding tolerant rice varieties and give a short overview of research and the conditions in Myanmar.

2.1 Salt tolerance

2.1.1 Importance of Salinity in Rice Production

Salinity is one of the major environmental stress factors that influences rice yields (Wattana and Maysaya 2008; Thomson et al. 2010). Over 6% of the global land area is affected by salt (Munns and Tester 2008). Twenty-seven million ha of land in Asia have limited productivity due to salinity (IRRI 1986). The issue has a considerable impact on rice production as more than 20 million hectares of land used for rice cultivation in South- and South-East-Asia are affected by salinity (Singh et al. 2010). Rice is known as rather sensitive plant regarding salinity (Platten et al. 2013; Munns and Tester 2008). Growth and productivity of rice are considerably lowered by salinity stress (Gregorio 2013). The yield reduction in saline soils compared to more favourable areas can reach up to 80% or even 100% (Singh et al. 2010). In most cases improving the conditions in saline soils is too complicated or economically not feasible, so breeding for salinity tolerance is a promising approach to improving the yield in these areas (Ray and Islam 2008).

2.1.2 Effects of Salinity on the Rice Plant

The rice plant has a changing tolerance to salinity throughout its development. It is most susceptible to salinity during seedling and reproductive stage with a considerably lower impact during germination and tillering (Singh et al. 2010; Rad et al. 2011; Yoshida 1981; IRRI 1986, 267)

The two major issues rice is facing in saline soils are ionic stress and osmotic stress. Osmotic stress can be observed after an increase of salt levels in the soil around the roots. Water uptake is limited due to changes in osmotic potential and stomatal closure. Reduced evaporation leads to a reduction in photosynthesis and ultimately dehydration. This shows partly in reduced relative water content of leaves, reduced shoot growth and increased root length. Ionic stress only appears at later stages of a longer lasting exposure to salinity when ions such as Na⁺ accumulate and exceed the cell-threshold, leading to disturbed protein synthesis, enzyme activity and photosynthesis (Horie et al. 2012; Wattana and Maysaya 2008). Osmotic stress gets visible through reduced shoot growth while ionic stress can be recognized by increased mortality of older leaves. The lower number of young leaves and their reduced surface will also indirectly limit photosynthesis without necessarily being linked to ionic stress (Munns and Tester 2008).

Before heading the number of tillers is negatively affected by salt, which leads to a reduced number of panicles with often reduced weight. It also leads to a delay of flowering and ripening. The reduction of the photosynthesis rate during flowering leads to an increased number of unfilled/empty grain. The effects of soil-salinity and the increased accumulation of Na⁺ is visible on the plant and can be observed by visual scoring. This type of scoring has shown to have a strong correlation to Leaf Na⁺ concentration and could thus be used for selection during breeding (Platten et al. 2013).

Overall there is a considerable decrease in yield with increasing salinity levels (Rad et al. 2011; IRRI 2015).

2.1.3 Mechanisms of Salinity Tolerance in Rice

The osmotic stress that affects the plants shortly after an increase in soil salinity can be alleviated by osmotic adjustments, namely the accumulation of ions or solutes in the root areas responsible for water uptake. This helps the plant to avoid dehydration but will still lead to reduced growth (Yoshida 1981; Horie et al. 2012; Wattana and Maysaya 2008). This process takes several hours to days, but the plant reacts immediately through metabolic changes. It also starts adapting the water permeability of the roots up to the point of changing the structure to allow sufficient water intake (Horie et al. 2012). The plants also have genetically controlled mechanisms to limit the inhibition of cell elonga-

tion and stomatal closure. This helps to partly compensate for growth reduction due to salinity (Munns and Tester 2008).

lonic stress on the other hand is managed by mechanisms like Na⁺ extrusion or reabsorption, summarised under the term ion-homeostasis. A reduced transportation of Na⁺ into the shoots or an increased accumulation of K⁺ are observed to increase plant survival during salinity stress and are mechanisms used by salt tolerant varieties. The accumulation of K⁺ in the shoots allows maintaining a high K⁺/Na⁺ ratio enabling the cells to continue their functions uninhibited (Horie et al. 2012). The reduced transportation of Na⁺ can be achieved by sequestration of Na⁺ in the root vacuoles and altering transport processes to avoid accumulation. Certain genes have also been identified that relate to a higher tolerance of tissues, delaying ion toxicity in the chloroplasts or sequestrating the Na⁺ into the leaf vacuoles. (Munns and Tester 2008).

The K⁺/Na⁺ ratio in plant tissues and salinity tolerance seem to be strongly linked and this ratio can also be used as an indicator for yield in affected areas (Ray and Islam 2008). At high salinity levels tolerance seems to be strongly related to the plant's capacity of keeping low Na+ concentrations in essential tissues (Platten et al. 2013). One study also found that the overexpression of certain proteins (OsMYB48-1) improves the tolerance of rice to salinity but the scale of the impact is still debated (Xiong et al. 2014). Research so far focusses on three main mechanisms for salinity tolerance: Osmotic adjustments, cellular Na⁺ exclusion and the tolerance of tissues to accumulated ions (Munns and Tester 2008).

2.1.4 Breeding for Salinity Tolerant Rice Varieties

Three decades ago the fundamentals of salinity tolerance like its relation to K⁺/Na⁺ ratios within the plant and the susceptibility at different stages were already known. A lack of knowledge regarding genetics and the physiology of salt tolerance slowed down the progress of breeding programs, but there was already some focus on using local adapted varieties to include these traits into high-yielding varieties (IRRI 1986, 265 f.). Many studies have improved the knowledge base regarding salt tolerance and enabled the development of rice cultivars that are tolerant to salinity. The mechanisms being responsible for this tolerance have not yet been fully understood (Wattana and Maysaya 2008).

The heritability of salt tolerance has been observed to be low to medium. This suggests that a breeding population should be large with a selection in later generations (Ray and Islam 2008).

Poor correlation between tolerance at seedling stage and tolerance at reproduction stage suggests that different genes are responsible for tolerance in the two stages. Both are required for varieties that are widely adapted to saline soils (Singh et al. 2010; Thomson et al. 2010).

The Saltol QTL (Quantitative Trait Locus) has been identified as a major regulator regarding Na+ uptake, but there are multiple QTLs and genes involved in the complex mechanisms of salinity tolerance. Current screening, although much larger in scale than some years ago, still has potential outside of conventional gene donors used in breeding. Traditional or even wild varieties might contain genes responsible for tolerances that are not known yet (Platten et al. 2013; Thomson et al. 2010). The Saltol QTL might be the most relevant regarding shoot Na+/K+ ration, especially during seedling stage, but does not provide sufficient tolerance by itself. It will rather be one factor in a breeding strategy involving multiple genes and tolerance mechanisms (Thomson et al. 2010).

Progress has been made in mapping the SalTol QTL facilitating the fast introduction of this quantitative trait locus into varieties. A few other genes, like the SKC1 gene controlling K+ homeostasis, have been identified and mapped. Using good markers and combining marker assisted breeding programs with discoveries made in molecular genetics, that help to identify the mechanisms of salt tolerance and single genes that can be inserted into intolerant varieties, has the potential to speed up the breeding process considerably (Gregorio et al. 2013; Thomson et al. 2010). This knowledge is being applied by integrating the SalTol QTL into varieties from Bangladesh and other countries and testing them on farmer fields in coastal areas (Islam and Gregorio 2013). The interest in molecular breeding methods is very high as many of the tolerance-donor varieties have unwanted characteristics that pose problems for conventional breeding tolerance (Thomson et al. 2010).

Many other candidate genes and their relation to salt tolerance have been identified, but the knowledge about their influence on tolerance and the mechanisms that they control varies greatly (Munns and Tester 2008).

The ability of the plants to reduce Na+ concentration in important cellular structures seems to be related to the HKT1;5 allele. Although salinity tolerance is clearly a polygenic trait, future screening and breeding should consider genotyping for this gene (Platten et al. 2013). The OsHKT1;5 has furthermore been identified as an important gene for K+ accumulation in the shoots (Horie et al.). Another study suggests that only expression of OsHKT1;5 in the roots is beneficial to salinity tolerance as a conditional and local overexpression led to reduced growth showing the importance of cell-type specific expression of genes controlling Na+ transportation (Plett et al. 2010). Further mapping of QTL's and their correlation to salinity tolerance could create advances in breeding programs and improve productivity in salt-affected soils (Platten et al. 2013; Gregorio et al 2013).

The International Rice Research Institute (IRRI) successfully crossed the wild rice species *Oryza Coarctata*, that grows in salty brackish water, with the IR56 variety of *O. sativa*. This cross is extremely difficult as the resulting embryos would usually die off due to the genomes of the two species being on the opposing ends of genome sequence. *O.coarctata* can tolerate salinity concentrations up to twice as high as the ones tolerated by current salinity-tolerant varieties. Being unsuitable for edible rice production the cross with a cultivated variety could create very interesting results through back-crossing. Out of 34'000 crosses one single plant has been successfully germinated and this plant holds great value for further research on salt-tolerance in rice (IRRI 2013).

High yielding varieties developed in experimental conditions might not be accepted by the farmers in the target area as it might not suit their quality preferences. To ensure adoption of new varieties the local communities should be involved in the breeding process by approaches like the participatory varietal selection (PVS) (Singh et al. 2010).

2.2 Flooding Tolerance

2.2.1 Importance of Flooding in Rice Production

Climate change causes erratic rainfall leading to increased drought and/or flooding in agricultural areas (Fukao et al. 2011; Tamang and Fukao 2015; Hom et al. 2015; Jackson and Ismail 2015; Denning et al. 2013). Estimates go as high as 30% of the global agricultural surface being affected by flooding. Many of the rice farmlands in the world are rain-fed and their productivity is endangered by environmental events, submergence being one of the main yield limiting factors (Zhang et al. 2015; IRRI 2017; Akinwale et al. 2015; Singh et al. 2013; Sarkar et al. 2009). Over 20 million ha of rice are grown in flood prone areas in Asia alone.

Rice is one of the only crops that can be grown in these fields, as rice can be grown without issues in waterlogged soils and can tolerate levels of submergence that would lead to the death of any other plant (Gregorio et al. 2013). Locations where the drainage system is limited and connected to nearby rivers are often affected by flooding as the rivers and canals are often not able to cope with the heavy rainfall during rainy season (IRRI 1986). It is key to develop varieties that produce high yields with good quality and are still tolerant to submergence to improve production and the resilience of rice systems in affected areas (Thi Lang et al. 2015).

2.2.2 Effects of Flooding on the Rice Plant

There are two main types of flooding that can be distinguished. The first one is long-term or deepwater flooding, with water levels up to 4 m for a duration of 2-4 Months. The second one is flashflooding, where there is usually a rapid rise in water level for some days. Both types of flooding can result in the submergence of the plant depending on the growth stage (Setter and Laureles 1996). The potential damage caused by flooding is biggest during booting and heading-flowering stages. Usually leaf discoloration, reduction of leaves, roots and growth can be observed in submerged plants. These effects can cause underproduction or even lead to a complete loss of harvest (Zhang et al. 2015). The limited supply of O_2 and CO_2 leads to a stop of the electron flows and an energy deficiency that can prove very damaging to the plant (Jackson and Ismail 2015).

If the water submerging the plants is muddy it will block the light from reaching the leaves. This will further reduce photosynthesis and clay deposition on the leaves may have additional negative effects on the performance of the crop (Singh et al. 2013). This stop in photosynthesis restricts nutrient absorption from the soil resulting in deficiencies within the plant with the risk of toxic products when continuously being limited to the anaerobic metabolism. Once water reclines the sudden exposure to oxygen and light can lead to toxic oxidative products and photo oxidative damage. These stresses cause an increased susceptibility to diseases but on the other hand seem to reduce damages by in-

sects (Tamang and Fukao 2015). Some different internal and external stresses of submergence and the following desubmergence are listed in Table 2.

Table 2 Effects of Submergence and Desubmergence on the Rice Plant (Source: Adapted from Tamang and Fukao 2015)

Effects on Plant	Submergence	Desubmergence
External Stresses	 Gas diffusion limited Low Light impact High risk of infection (humidity) Salinity (coastal areas) 	 Higher oxygen exposure Higher light exposure High risk of Infection (humidity + weak plant) Nutrient leaching Salinity (coastal areas)
Internal Stresses	 Oxygen/Nutrient deficiency Transportation limited -> Starvation Toxic metabolic products Osmotic/Salt-stress (coastal areas) 	 Oxidative stress Dehydration/Photo inhibition Nutrient deficiency Osmotic/Salt-stress (coastal areas)

The production of panicles per m² has been reported to be the yield component most affected by submergence. A big part of the differences in tillering ability during submergence is related to reduced light interception and thus photo assimilation (Kato et al. 2014). Most rice cultivars react to submergence with shoot elongation with the goal to overgrow the water surface to restore aerobic photosynthesis. This process is regulated by stress hormones released due to reduced light or oxygen availability. The reactive chain is started by the hormone ethylene (Kawano et al. 2008).

2.2.3 Mechanisms for Flooding Tolerance in Rice

The rice plant is generally suited for flooding-prone areas as it can tolerate waterlogged soils and roots. Being completely immersed by water for more than a week will still result in the death of most varieties. The plant has multiple mechanisms to react to submergence ranging from fermentative metabolisms to development of adventitious roots, internode elongation and conservation of energy for re-emergence after floodwaters recline (Tamang and Fukao 2015).

As there are different types of flooding there are also different types of flooding tolerance. Depending on the type of flooding a different response mechanism in the plant is desired. Deepwater rice reacts to submergence by elongating the shoots to outgrow the water as this is the only possible way of survival if water levels stay high for are longer period. Varieties that use a strategy known as quiescence (slow shoot elongation) on the other hand restrict shoot development as a reaction to flooding and are better adapted to short flood durations. The survival of cultivars after flash floods is negatively correlated with shoot elongation during complete submergence. This seems to be related to the higher energy reserves present in the tolerant varieties which enables them to sustain maintenance for longer and start production of new leaves shortly after desubmergence (Fukao etl al. 2011; Setter and Laureles 1996; Kato et al. 2014). The conservation of carbohydrates and the maintenance of physical structure during submergence seem to have the strongest effect on submergence tolerance (IRRI 1986, p.179; Kawano et al. 2008).

These mechanisms are both controlled by proteins that bind to specific loci that trigger the desired reaction. SNORKEL 1 and 2 (SK1/SK2) are the two loci responsible for enhanced shoot elongation and SUBMERGENCE1 (SUB1) is the locus responsible for reduced elongation. This locus influences ethylene responses and through a cascade of responses limits energy consumption. This genetic mechanism properly coordinates physiological and molecular responses within the plant (Fukao et al. 2011; Tamang and Fukao 2015; Kawano et al. 2008). The SUB1A gene found in some *indica* and *aus* varieties enables plants to survive complete submergence of up to 16 days. The SK genes on the other hand can only be observed in deep-water rice (Tamang and Fukao 2015). Submergence-tolerant varieties usually express the SUB1A gene (Kawano et al. 2008). It has been observed that the SUB1A gene, being the most important regulator of submergence tolerance, is also a key actor in the reaction to post-submergence stress. Genotypes with the SUB1A gene show faster recovery from dehydration, lower

leaf water loss and reduced lipid peroxidation (Tamang and Fukao 2015). Varieties expressing the SUB1 gene are only performing optimally under circumstances where the water level drops after no more than 15-20 days. In cases of slow drainage or so called stagnant flooding it is possible that the SUB1 gene reduces productivity of the plant as it supresses shoot elongation. This results in the plant not being able to outgrow the water to reach air and sunlight (Singh et al. 2013; Sarkar et al. 2009). It has been reported that some naturally submergence tolerant varieties are insensitive to ethylene and thus avoid the energy loss trying to outgrow the water surface by not or barely reacting to the hormonal stress after submergence (Kawano et al. 2008).

2.2.4 Breeding for Submergence Tolerant Rice Varieties

Submergence tolerance has been considered a crucial breeding objective in rice for decades, especially for rainfed lowland areas. When introducing tolerances into varieties it is important to know the inheritance patterns of traits influencing the desired trait. For submergence, there are quite a few studies that mainly describe dominance of tolerance over non-tolerance, but also a few additive and non-additive gene effects influencing the inheritance (Akinwale et al. 2015). Great advancements have been achieved regarding submergence tolerance, especially due to the implementation of molecular markers and combination of different crossing methods (Thi Lang et al. 2015).

Three genes (SUB1A, SUB1B and SUB1C) have been identified within the SUB1 QTL that are responsible for encoding ethylene response factors. SUB1A, which was later also identified as a major cause for submergence tolerance, was mapped using a landrace called "FR13A" that is widely studied and now used as a source of submergence tolerance (Singh et al 2013, Sarkar et al. 2009).

The discovery and extraction of the SUB1A gene, together with other QTLs, was a huge step towards introducing tolerances to abiotic stresses into high yielding varieties. These traits built the basis for marker-assisted selection (MAS) that has accelerated the development of new varieties reducing the risks of rice producers in areas affected by environmentally limiting factors.

In 2003 IRRI started an initiative to introduce the SUB1A gene into very popular varieties from south Asia. Bangladesh, India, Indonesia, Nepal and the Philippines have also started releasing new submergence tolerant varieties using the introgression of the SUB1A gene into very popular and commonly used varieties. The first, most popular and most successful of these varieties is Swarna-Sub1. Submergence tolerance in rice is one of the big success stories of MAS as it was possible to increase the yield following total submergence by 1 to 1.3 t/ha purely by introducing SUB1 into the varieties (Gregorio et al. 2013; Singh et al. 2013; Sarkar et al. 2009).

Under certain conditions it might be interesting to combine submergence tolerance, in the form of reduced elongation when fully submerged, and tolerance to stagnant floods, by enabling elongation in cases of partial submergence. No varieties that combine these characteristics have been found yet (Setter and Laurels 1996). These linked tolerances could be very beneficial for flood-prone areas in Asia, as submergence is usually started or followed by stagnant flooding. Marker-assisted back-crossing of SUB1-varieties and traditional flooding resistant varieties could lead to improved tolerance and identification of genes that complement SUB1 (Jackson and Ismail 2015).

Introduction of SUB1 into varieties with taller seedlings might help to mitigate the issues observed with stagnant flooding when integrating SUB1 into very short growing varieties like Swarna (Sarkar et al. 2009).

2.3 Deltas and Coastal Areas

The average yield in coastal deltas in Myanmar and other South-East-Asian countries is far below the respective national average. This is partly due to salinity and submergence often appearing within short timeframes or even at the same time. On the other hand, it is due to continuous cultivation of traditional landraces that have a lower yield potential than their modern counterparts but show decent tolerances to abiotic stress. Knowledge and financing are limiting factors and force the farmers to use a low risk low reward strategy. Combined with other abiotic stresses these issues can lead to a total failure of the crop, especially when rainfall is unstable. In rainfed lowland areas that are prone to flooding, and especially coastlines affected by saltwater intrusion, the inclusion of submergence tolerance into salinity tolerant varieties is important as new varieties would otherwise risk total failure and would not be adopted by the local population (Singh et al. 2010; Gregorio et al. 2013; Tamang and Fukao 2015).

Recently some varieties that are tolerant to salinity as well as submergence have been developed by introducing the *SalTol* and the *Sub1* QTL's into a high-yielding IR-variety. The increasing frequency and simultaneous appearance of abiotic stresses, partly caused by climate change, forces breeders to combine multiple tolerances in one genotype. It is very complicated to create this omni-tolerant geno-type as the complexity of traits involved in certain tolerances will slow down the development process (Gregorio et al. 2013). How complete submergence, combined with high levels of salt, affects ion transport within the rice plant is still poorly understood what further hinders progress in breeding (Tamang and Fukao 2015).

It is very difficult to increase adoption of improved varieties in these regions due to a multitude of factors. The often remote location of farmers hinders extension to reach these areas, resulting in a lack of information about new varieties and cultivation practices. Another issue is that research is mostly done on-station, which is often not representative for the conditions of the fields the rice will be grown in. Furthermore, the input from farmers is often only sought at the latest stages of the breeding process, resulting in a lack of understanding of the farmer's needs and varieties that are sometimes not adapted due to taste or texture issues (Paris et al. 2011, p.2).

Examples have shown that in complex conditions participatory approaches, like participatory varietal selection (PVS) or participatory plant breeding (PPB), can show improvements compared to purely research-based methodologies regarding variety development and adoption. By improving the communication between researchers and farmers, and reducing their gap respectively, the situation of the people affected by these environmental stresses can be significantly improved (Singh et al. 2010; Walker 2007, p.7ff; Paris et al. 2011, p.2).

2.4 Myanmar

2.4.1 Rice in Myanmar

Myanmar has dropped from once being the biggest rice exporter in the world to being a small player on the international market. The countrie's potential is still high due to its big land surface and sufficient water resources. Recent changes in policies, international investment and an improving infrastructure show a positive tendency that could lead to favourable development of the rice market (Denning et al. 2013, p.1). The livelihood of more than 60% of people in Myanmar depends on agriculture. The country was placed second on the Germanwatch's Climate Risk Index for 1994-2013 and was hit by a category-4 cyclone called Nargis in 2008 (IRRI 2016a). The main crop remains lowland rainfed rice alongside green gram (Wongthong and True 2015a). Floods have been one of the main natural disasters affecting Myanmar. Kayin and Mon State are prone to heavy rains that can generate dangerous floods, especially when combined with tidal surges and inadequate drainage. The Sittaung and the Ayeyarwady River regularly overflow and flood the adjacent areas (Hom et al. 2015; Naing et al. 2008).

The increased frequency of late or early monsoon seasons, changes in rainfall and temperature patterns with tendencies to more extreme events and longer dry periods caused by climate change have been challenging the farmers in Myanmar. Over 30% of the land's rice surfaces are considered unfavourable area. Of these, the majority are prone to drought or submergence. Large surfaces are affected by salinity, namely 60'000 ha in the Ayeyerwady Delta and more than 5'000 ha in Mon State (Hom et al. 2015; IRRI 2016b). More and more fields become unsuitable for green gram production due to saltwater intrusion during summer. This also causes losses in the rice crops if occurring during the critical stages of growth (Wongthong and True 2015a). Myanmar seems to have more issues with flooding caused by rainfall then by rising sea levels (McKinley et al. 2015).

Rice is mostly produced by smallholders owning an average of 1 ha of paddy land, but there is a wide array of production systems ranging from subsistence farming to specialised production destined for export. The public sector is responsible for infrastructure, policies, research, development and extension, while the private sector is mostly active in the markets of input supply, production and processing. Some companies have started providing contract work with good machinery to the farmers to improve planting and harvesting. In some regions the use of machinery is limited due to small parcel size and limited access to the fields. Sale at farm-gate level is not preferred by small-scale farmers, but often necessary due to the immediate need for income and their limited resources for transportation. Better prices can be achieved by storing the rice to be sold a few months after harvest. Many farmers cannot benefit from this to due insufficient storage facilities or the need for liquidity to pay

the workers for the next crop (Wongthong and True 2015a; Htay 2017). Most farmers have stated themselves as source for seed. The production in lower Myanmar, especially in the south, is extensive with little herbicide and fertilizer use and little to no weeding. Insecticides are applied by some farmers, but only the wealthier farmers on better soils can afford to do so (Naing et al. 2008; Htay 2017).

The Department of Agricultural Research (DAR), under the Ministry of Agriculture and Irrigation (MoAI), is the main governmental institution conducting Research and Development in the agricultural sector. Its focus lies on improved seed, crop management, crop protection and cropping systems. Yezin Agricultural University (YAU) is the institution of agricultural higher education where most scientist and governmental staff graduated. There is only very little research and development done by private companies in Myanmar. There is some degree of collaboration among the national agencies and there are some international research institutions and universities that are in exchange with their respective Myanmar counterparts. Quality and quantity of educated personnel in research and development are still low and constrain the ability to cope with the severe economic, environmental and political stress situations. The Department of Agriculture (DOA) is the institution responsible for the implementation of policies regarding extension and support (Stads and Kam 2007; Yi et al. 2010).

The weak institutional and technological infrastructure in Myanmar poses challenges regarding climate change adaption. Gaps of knowledge and information have to be filled in order to benefit decision making on a local level and development of technology. The climate information available in Myanmar is too general and needs to be adapted specifically for every location including uncertainties and the scale of climate change impacts (McKinley et al. 2015).

In 2011 the International Rice Research Institute (IRRI) started a collaboration with the DAR with the aim to develop suitable varieties for the marginal areas of Myanmar. Together with 60 farmers the newly produced varieties were compared to other varieties from IRRI close to Mandalay to identify high-yielding salt-tolerant varieties that would cope with the abiotic stress in Myanmar's dry zone. Pyi Myanmar Sein, one of the newly created varieties, performed best during these trials and farmers were interested in getting the seeds for the next wet season (IRRI 2016b).

Two years later, in 2013, IRRI evaluated varieties together with farmers from the Ayeyarwady Delta. This was the first time implementing an extensive participatory approach in Myanmar to evaluate varieties regarding the farmers' as well as the consumers' needs. The selected varieties were quickly adopted and the process helped disseminate the change throughout the region (Rahman et al. 2015).

The main areas for improvement of rice production in Myanmar seem to be seed selection, land preparation, crop emergence, soil-/water-/pest-management, crop rotation and post-harvest processing (Denning et al. 2013, p.9). Further assessments of the rice production and its issues are necessary to efficiently target investment into the agricultural sector. A centre enabling collaboration between national and international organisations, under the lead of IRRI and the DOA could help to improve the situation in Myanmar (ibid, p. 20 ff.)

2.4.2 The Gulf of Mottama

Due to the enormous masses of sediments from the three rivers (Ayeyarwady, Sittaung and Thanlwin) flowing into the Gulf of Mottama (GoM) it is the biggest and most significant intertidal mudflat in Southeast Asia. It is source of livelihood for many people living in the golf and supports a unique ecosystem of aquatic species and wintering shorebirds. Being difficult to access it is also not well studied. Tidal peaks of 7m keep a zone of up to 45'000 km² turbid. The Gulf has been proposed, and now acknowledged, as a Ramsar site to protect the birds in the Gulf, particularly the Spoon-billed sandpiper. Most people in the coastal villages depend on agriculture, being rice in the wet-season (April-November) and legumes in dry-season (December-March). Productivity heavily depends on seed quality, agricultural technique, soil quality (salinity) and possibility of irrigation (Wongthong and True 2015b). The biggest crop losses in the coastal areas are due to flooding or saltwater intrusion while the generally lower production is probably due to the lack of irrigation and proper water management. Tackling these issues is essential for the region (Hom et al. 2015; Naing et al. 2008).

The main challenges reported by rice-value chain actors in Mon State are as follows (Wongthong and True 2015a):

- Lack of organisation among producers
- Poor condition of infrastructure (roads/irrigation)
- Limited access to: information, financing, resources
- Limited capacity for value addition to products and post-harvest processing
- Environmental insecurity, climate change
- Little cooperation between private and public sector
- Market controlled by big actors (Rice mills, exporters)
- Unethical contracting and labour conditions

The lacking know-how of input suppliers leads to problems for the farmers acquiring agrochemicals. Improper use of inputs, labour shortage, lack of financing/mechanisation/livestock, low farm-gate prices and low-quality seed lead to reduced income or even the complete failure of the crop. Access, to goods, information and markets, can be identified as the main constraint for agricultural livelihood in Mon State (Wongthong and True 2015a; Htay 2017).

3 Material and Methods

3.1 Material

3.1.1 Site/Time-period

The Trials used as a basis for this work were conducted in two villages in Mon State during monsoon

season (Mai-November) 2017. As can be seen in figure 1, Boyargyi (Kyaikto Township, Nr 19) is located close to the Sittaung Rivers entry into the sea and Zokekali (Bilin Township, Nr 27) is located on the coast. Both villages were selected due to their cooperation with the project and the location close to the sea. The villages have both issues with salinity and flooding, the prior being stronger in Zokekali and the latter more frequent in Boyargyi. In each village 5 farmers were selected using the following criteria in said order:

- 1. Owns land affected by either salinity or flooding, preferably both;
- 2. Grows Rice during monsoon season on said land;
- Owns enough land to give some of it to the projects disposal;
- 4. Fields are accessible without excessive effort.

Figure 1 Community-Led Coastal Managment in the Gulf of Mottama: Project Village Location (Source: adapted from IUCN 2015)

The fields of each respective farmer will be refered to as "plots" or "trial-plots". When talking about a specific plot of one variety, the term "sub"-plot will be used, whereas the areas where data collection took place will be labelled "sample" plots. For more detail see chapter 3.2.1. The plots were selected to be as uniform as possible. The salinity of the soils was tested using an EC-Meter and a soil sample obtained at 5cm depth at the centre of each trial plot, resulting in five measurements per village. The soil types that were assumed for the calculation were selected based on information Mr. Tun Zaw Htay. The conversion factors stated by Watling (2007, p. 1) were used to then calculate the EC based on a measurement taken from a 1:5 sollution of soil and distilled water. When doing this type of EC-measurement, the soil is supposed to sediment before measuring the conductivity. This did not happen for plots 1,4 and 5 in Boyargyi and plot number 5 in Zokekali. Because of this, the values listed in Table 3 are expected to be too low, as the lack of sedimentation will result in lower measurement values. The salinity values observed are as follows:

Table 3 Levels of Salinity in the Different Trial-Plots

$EC_{SE} = (EC \ 1:5 \ x \ conversion$ ratio based on soil type)	Boyargyi	Zokekali
Plot Nr.1	4.2 (0.3x14) = Moderately Sa- line	7 (0.5x14) = Highly Saline
Plot Nr.2	17(1.7x10) = Extremely Saline	14 (1.4x10) = Highly Saline
Plot Nr.3	7 (0.5x14) = Highly Saline	13 $(1.3x10)$ = Highly Saline
Plot Nr.4	2.8 (0.2x14) = Moderately Sa- line	12 (1.2x10) = Highly Saline
Plot Nr.5	8.4 (0.6x14) = Highly Saline	4.2 (0.3x14) = Moderately Sa- line

3.1.2 Varieties

Ten varieties were selected for the trial, ranging from local traditional varieties to new IR varieties produced by IRRI that are still in the certification process. The varieties have been selected based on literature and the recommendations of CLCMGoMP's Livelihood Officer, Mr. Tun Zaw Htay. As can be seen in Table 4, three salinity tolerant and three submergence tolerant varieties have been selected, together with three traditional varieties from areas with similar conditions. Pawsanyin, the variety used by most farmers in the chosen villages, was used as control/zero treatment. For reasons of comprehensibility the acronyms mentioned in the table will be used throughout the presentation of the results and the discussion.

Туре	Acronym	Name	Source	Origin	Seasonal
Zero Treatment/ Con- trol	0Т	Pawsanyin	Farmer	Mon State, local	Yes
	L1	Baygyar	Farmer	Ayeyarwady	Yes
Traditional/Local	L2	Kyarpyan	Farmer	Ayeyarwady	Yes
	L3	Taungpyan	Farmer	Mon State, different area	Yes
Flooding/Submergence	Fl	Swarna-Sub1	DoA Bago Re- gion, Kawo Township	IRRI	No
Tolerant	F2	Mekyut	DoA Mon State, Kyaikhto Town- ship; multipli- cated by project- farmer	DAR	Yes
	F3	IR-84649	DoA Mon State, Kyaikhto Town- ship; multipli- cated by project- farmer	IRRI	No
	S1	Pyimyanmarsein	DoA Mon State, Paung Township	DAR	No
Salt Tolerant	S2	IR-225	DoA Mon State, Paung Township	IRRI	No
	S3	Sinthwelatt	DoA Ayeyarwady	DAR	Yes

Table 4 Varieties Selected for the Trial

3.1.3 Farmers'-Practice

To represent the situation of the local farmers as authentically as possible the Trials were conducted using farmers' practice. Everything, aside from transplanting and fertilisation which were both guided by the project, crop and field management was left to the farmers' choice. Transplanting was done in one day, instructed by Mr. Tun Zaw Htay with assistance of paid labour (Figure 2). Fertilisation was only limited regarding quantity. The time of application was left to the farmers. The nursery, where the plants stay until transplanted, was collective for the five farmers in each village. In Zokekali sowing was done on June 3 with transplanting done on July 3. The nursery was fertilized with 25 kg/ha of urea twice, once 12 and once 24 days after sowing, resulting in a total of 23 kg/ha of nitrogen. The trial field received another 50 kg/ha of urea and 25 kg/ha of compound fertilizer (15-15-15) adding up to 26.76 kg of nitrogen and 3.75 kg of phosphorous and potassium per hectare after transplanting. These quantities were based on discussions with the farmer

ers and represent averages of the participating farmers. The timing and

Figure 1 Transplanting with Traditional Stick in Zokekali

distribution was left to the farmers. The trial followed the same schedule in Boyargyi, with one week of delay due to a later onset of the rainy season.

3.2 Methods

3.2.1 Trial Design

The varieties were first sown into nursery seedbeds that measured 21x21 ft. Within these fields, 5 small plots of 1ft² were marked to measure the emergence rate of the varieties. The sample plots, as can be seen in Figure 3, were aligned diagonally to get samples from the centre as well as the outside of the fields. As sowing density and quantities generally are referred to in volume in Myanmar, the exact seeding density was later calculated by counting the amount of seeds in 125ml and upscale this number to the volume sown. The emerging plants were then counted three times a week until transplanting, which was done 30 days after sowing. The plants were transplanted using the traditional technique from Mon State, which is using a stick that has trident-like tool at its end. This speeds up the process, relieves pres-

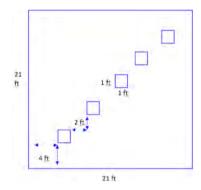


Figure 2 Layout of Nursery

Plots with Sample Plots

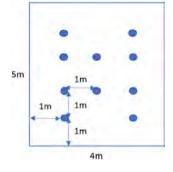


Figure 3 Layout Plant Selection for Data Collection

sure on the back compared to conventional transplanting and avoids injuries through waste in the fields.

The trial consisted of ten 4x5m plots per farmer. These plots were arranged in two rows of 5 to create uniform conditions throughout the plots. Between the sub-plots small paths of 2ft had been left out to allow observation of the plots without damaging the plants. A Random Complete Block Design was used for assigning the varieties within the farmer fields. Within the sub-plots 10 plants were selected and marked for data collection by placing bamboo sticks next to them. The selected plants were, as illustrat-

ed in Figure 4, all 1m away from the plot-border and from each-other.

3.2.2 Data Collection

While being in the nursery the number of plants within the sample plots were counted three times a week to observe the development of the varieties over the first month (Figure 5). The Emergence percentage was then calculated by dividing the amount of plants counted by the total amount of seed in the sample plot and multiplying by 100. Before transplanting the height of 10 plants per sample-plot was measured, to be able to estimate the average height at transplanting. During the growing period the following data was collected on a weekly basis: Plant height, leaf colour and number of tillers (Figure 6). Once the plants entered flowering stage the number of panicles, the length of the biggest panicle and the number of spikelets were registered as well. Plant height was measured from soil level to the tip of the longest leaf. Leaf colour was assessed using leaf

colour charts provided by IRRI and the DOA.

Furthermore heavy damage to leafs or yellowish colouring of the

Figure 5 Data Collection in the Nursery, Boyargyi

leaves would result in a lower index. Damaged leaves would result in a reduction of the leaf colour index by 1. Heavily damaged plants in

a reduction by 2 and nearly dead plants with entirely brown leaves or very strong signs of salinity/flooding/pest damage resulted in a leaf colour index of 1. A dead plant was recorded as a value of 0. When counting the number of tillers, also emerging tillers were included until the start of flowering. The number of panicles refers to the number of completely emerged flowers, panicles that were still emerging and only partially visible were not counted. Panicles still in the process of development were not counted. Panicle length was measured from the panicle neck node to the tip of the panicle, selecting the biggest panicle of the plant. The same panicle was used to count the number of spikelets, where every grain in development was counted. The number of panicles per tiller was calculated individually for every selected plant using the number of panicles and the number of tillers collected before harvest. For the case that a plant had died during the week, its death was recorded and the nearest plant was selected for data collection in the following week.

3.2.3 Harvest

All varieties were harvested once they were fully matured. The ten plants that were observed during the entire cropping cycle were measured one last time before harvesting a sample plot of 2x2m in the centre of the trial plot. In cases of extreme losses. Due to flooding, salinity or pests, the most representative square of 2x2m was selected. Within these 2x2 m the number of panicles, panicle length and number of spikelets of ten more plants was recorded. The number of hills within these 2x2 meters was counted and yield parameters were collected in volume and weight, to

correspond to the local market that still mainly uses volume as unit of measurement. The entire harvest and processing was done by hand (Figure 7).

3.2.4 Farmers opinion and demonstration plot

In Boyargyi a demonstration plot was established using the seedlings remaining from the nursery. The plot was cultivated by an exemplary farmer that collaborates with the project. The demonstration plot was used during farmer field schools to explain the trial process and to train farmers on respective activities. They were asked to participate in grading events throughout the growth period, where they were asked to judge the presented plants and communicate their opinion regarding the newly introduced varieties. The two gradings were done shortly before transplanting and harvest respectively. Before transplanting they were asked to judge the varieties' plant height, plant density, leaf colour and root development. They were asked to give an overall grade to the varieties. The

Figure 4 Separation of Grains and Stems after Harvest, Boyargyi

Figure 5 Grading of Trial-Plot by Farmers, Boyargyi

average grade was calculated using all obtained values and dividing them through the number of grades. Before harvest the farmers of both villages were invited to Boyargyi and were asked to estimate the yields of a trial plot and the demonstration plot respectively. Additionally, a few questions regarding cultivation practices and the project itself were asked. The yields obtained in this demonstration plot cannot be used in any statistical analysis, but can be used to show the varieties' tendencies regarding improved cultivation practice. The three main differences compared to the cultivation practice applied in the trial plots were improved soil preparation and levelling, transplanting by hand and improved water management through drainage.

3.2.5 Statistical analysis

Due to the very different nature of soil, weather and practice, the two villages will be considered separate trials. The very high variability between the two villages would lead to an increasing insignificance of the results, which is why a separate analysis of the two villages was chosen. This may allow for separate recommendations for the two villages, as they are affected by certain abiotic stress factors to different extent.

An Analysis of Variance (ANOVA) within NCSS was used to evaluate the significance of the observed results. Each date was analysed separately, no analysis over the entire growth period was conducted. The influence factor throughout all tests remained the ten chosen varieties. The data collected during the nursery was analysed using a One-Way Analysis of Variance and the Scheffe's Multiple Comparison Test (SMCT). The dependent variables were emergence rate (%) and plant height (cm). If the conditions for the ANOVA (normality of residuals and equality of variance) were not met, and a transformation of the data could not solve the issue, a Kruskal-Wallis One-Way ANOVA on Ranks was used together with a Dunn's/Bonferroni-Test to determine the significance.

For the data collected during the growth period an Analysis of Variance for Balanced Data (ANOVA with Blockdesign) for 10 factors (10 varieties) and 5 blocks (5 farmers per village). The target variables (plant-height, leaf-colour, number of tillers, number of spikelets, number of hills, yield) were put into relation to the varieties. The requirements were controlled using the tests of assumption included in the One-Way Analysis of Variance (equality of variance) and the multiple regression (normality of residuals). Should the data not meet the requirements, a Friedman's Test was used to determine significance using the same dependent varieties. To further analyse this data, a Wilcoxon-Wilcox Test on Ranks was used. Calculations for this test were done in Excel and are provided in the appendix. All analysis was done using a significance level of p < 0.05, 10 factors and 5 blocks configuration in Zokekali respectively.

4 Results and Discussion

The following chapters will highlight the most relevant results obtained throughout the trials. Details regarding statistical analysis can be accessed in the respective chapters in the appendix. The results will focus on four major subjects: emergence in the nursery, growth during the cropping period, yield performance and the farmers' perception of the varieties. The results will be shortly discussed and put into perspective. A conclusive discussion will be presented in a subsequent chapter.

4.1 Nursery

4.1.1 Emergence

The local and the salt-tolerant varieties are the ones that seem best adapted to the nursery conditions in the two villages. Higher emergence was observed in Boyargyi. This can be attributed to a finer land preparation, better levelling and water management through drainage. Due to insufficient emergence no further values were obtained for F2 Mekyut and F3 IR-84649 in Zokekali. The trial was continued without those two varieties, while the number of plants in Boyargyi was sufficient for a continued integration of the varieties in the trial. The low emergence of

Figure 6 Nursery in Zokekali, Empty Plots = F3 in the Front, F2 in the Back

the two flooding tolerant varieties might be due to the age of the seeds and improper storage. The seeds of these two varieties were obtained from a farmer that had multiplied the seed for the project in 2015. Insufficient storage facilities might have led to a loss in quality/germination. The inconsistent development of the emergence is probably due to snails and changing competition between the seedl

ings. Following is a summary of the values and significant differences observed.

4.1.1.1 Boyargyi

There were significant differences in the emergence rates throughout the 25 days in the seedling nursery plots in Boyargyi. The significant differences over the course of the month before transplanting are listed in Table 5.

Nine days after sowing, the local varieties, except for L2, showed the best emergence rates together with S3 (0T-90.76%, L1 76.2%, S3-71.7%, L3 66.8%), shortly followed by F1 (65%) and S2 (63.5%). The other varieties struggled to emerge showing a thinner density (S1 46.1%, F2 38.6%, L2 16.8%, F3 7%). The factor variety had a significant influence on the emergence of the rice plants. A further analysis showed that the emergence of F3 was significantly lower than that of S3, L1 and OT. L2 was only significantly lower than OT. Between the other groups there were no significant differences.

After sixteen days S1 and F1 (S1 61.3%, F1 83.4 %) had remarkably increased in number, while the other varieties only saw slight changes in emergence (OT 102.4%, L3 73.2%, F2 43.7%, S2 68.2%) if at all (L1 75.7%, S3 70.7%, L2, 15.4%, F3 6.9%). The varieties continued to show a significant influence on the rate of emergence. The multiple comparison test showed that F3 had a significantly lower emergence rate than F1 and OT, while L2 was lower than OT. The other varieties remained without significant differences.

Table 5 Significant Differences: Boyargyi - Emergence

Days after seed- ing	Significant differences
4	F3, L2<0T, F1, L1, S3
2/7	F3<0T, F1, L1, S3 L2<0T, F1
9	F3<0T, L1, S3 L2<0T
11	F3<0T, F1 L2<0T
14	F3, L2<0T, F1
16	F3<0T, F1 L2<0T
18	F3<0T, F1 L2<0T
21	F3, L2<0T, F1
23	F3< 0T, F1, L1 L2< 0T, F1
25	F3, L2<0T, F1

After twenty-five days 0T remained with the highest emergence rate of 85% with five varieties having very similar seedling counts (F1 75.3%, L3 67.6%, S2 65.9%, L1 65.5%, S1 63.1%). S3 had remained with 57.8% emergence with F2 having stabilized at 46.3%. Two varieties didn't exceed 15% emergence (L2 14.7%, F3 12.6%). The influence of the variety remained significant with a lower emergence of F3 and L2 compared to 0T and F1. Still no differences between the other varie-

Figure 8 Broadcasting Seeds, Boyargyi

ties were found. The development of the emergence rates of 0T, F1, F3, L1, L2 and S1 are illustrat-

ed in Figure 10.

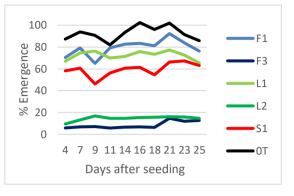
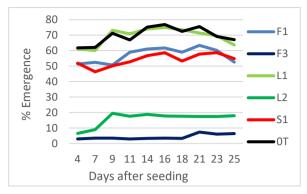


Figure 7 Emergence of F1, F3, L1, L2, S1 and OT, Boyargyi


The values above 100% occur because the seeding density was only approximated and the seeds were broadcasted, creating spots of higher density (Figure 11). The low emergence of F3 and F2 may be explained through losses in seed quality through storage or low seed quality to begin with. The low emergence of L2 was not expected and the reasons for it are not entirely clear. Damage through snails, too much or too little water in very specific spots might have contributed to the result. The other rates were generally perceived as good, considering difficulties with pest and water management in the region. The good soil prepara-

tion and drainage of the plot in which the Nursery was located will surely have contributed to the relatively high numbers of emerging and surviving plants. OT Pawsanyin has the highest emergence, which was to be expected as the variety has been adapted to the local customs and vice versa.

4.1.1.2 Zokekali

Table 6 Significant Differences Zokekali - Emergence

Days after	Significant differences
seeding	
4	F2, F3, L2 <l1, l3,="" s1,="" s3<="" th=""></l1,>
7	F2, F3, L2 <f1, l1,="" l3,="" s1,="" s2,="" s3<="" th=""></f1,>
9	F2, F3 <l1, l3,="" s1,="" s2,="" s3<="" th=""></l1,>
	L2 <l1, l3<="" th=""></l1,>
11	F2, F3 <l1, l3,="" s1,="" s2,="" s3<="" th=""></l1,>
	L2 <l1, l3<="" th=""></l1,>
14	F2, F3 <l1, l3,="" s1,="" s2,="" s3<="" th=""></l1,>
	L2 <l1, l3<="" th=""></l1,>
16	F3 <l1, l3,="" s1,="" s2,="" s3<="" th=""></l1,>
	F2< L1, L3, S1, S3
	L2 <l1, l3<="" th=""></l1,>
18	F3<0T, F1, L1, L2, L3, S1, S2, S3
	F2<0T, F1, L1, L3, S1, S2, S3
	L2 <l3, s3<="" th=""></l3,>
21	F3<0T, F1, L1, L2, L3, S1, S2, S3
	F2<0T, F1, L1, L3, S1, S2, S3
	L2 <l1, l3,="" s3<="" th=""></l1,>
23	F3, F2<0T, F1, L1, L2, L3, S1, S2, S3
	L2 <l1, l3,="" s3<="" th=""></l1,>

	25	F3, F2<0T, F1, L1, L2, L3, S1, S2, S3
in		L2 <l1< th=""></l1<>

Also Zokekali

the varieties showed significant differences regarding emergence rate throughout the 25 days in the nursery. The significant results and the evolution of the varieties OT, F1, F3, L1, L2 and S1 are displayed in Table & and Figure 12. L3 (73.2%) and L1 (69.9%) had the highest emergence nine days after seeding, with the three salt-tolerant varieties and the OT having very similar plant counts (S1 54.6%, OT 51.6%, S3 48.2%, S2 42.9%). F1 (36.4%) and L2 (22.1%) showed very low emergence while F2 and F3 didn't emerge

at all. The factor variety had a significant influence on the emergence with a significantly lower emergence of F2 and F3 compared to all varieties except F1 and L2. L2 is significantly lower than L1 and L3. F1 is not significantly different from any other variety. Seven days later the distribution was similar with the local and the salt-tolerant varieties showing good emergence in Zokekali (L1 74.3%, L3 74.17, S3 59%, S1 56%, OT 51.4%, S2 47.3%). F1(40.1%) and L2(20.1%) stayed consistant in values while F2 (8.2%) had a few plants emerging and F3 (0%) remained without seedlings at all. The influence of the variety on the emergence stayed significant with F3 being significantly lower than all varieties except F1, L2 and F2, F2 being lower than S1, S3, L3 and L1 and L2 being lower than L3 and L1. Twenty-five days after seeding the observations remained similar with the local and salt-tolerant varieties showing the best performances (L1 61.9%, L3 52.5%, OT 48.2%, S3 46.8%, S1 46.7%). The other varieties struggled resulting in less than 1/3 of the seeds emerging (S2 32.5%, F1 28.8%, L2 21%, F2 2.2%, F3 0%). The influence of the factor variety remained significant with F2 and F3 having lower emergences than all the other varieties.

Figure 9 Emergence of F1, F3, L1, L2, S1 and OT, Zokekali

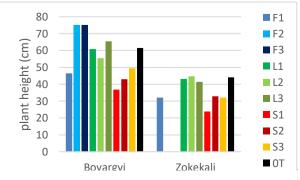

The low Emergence of F2 and F3 can be explained by the seed quality and duration of storage. Those two varieties were obtained from a farmer that had reproduced the seed in 2015 and stored it in local facilities that often struggle to maintain low humidity. The generally lower emergence compared to Boyargyi is probably due to the lack of drainage and soil preparation. The varieties were seeded into 10-15cm of standing water compared to sowing directly onto the soil as in Boyargyi (Figure 13). The drainage guarantees contact between the soil and the seed and increases germination and emergence.

Figure 10 Broadcasting Seeds, Zokekali

4.1.2 Plant Height

It was expected that the local varieties would show higher average plant heights, as high-yielding improved varieties usually have shorter stature. This is due to more resources being allocated to reproductive rather than vegetative organs within the plant. Higher plants might be advantageous in areas with stagnant flooding, as they will more easily outgrow the water. In the situation of a flash flood, the

shorter plants are in advantage as the risk of collapse, once the water is gone, is lower. The values observed correspond to this expectation, except for F2 Mekyut and F3 IR-84649.1295.30. These two varieties reached very high plant heights in Boyargyi, due to low emergence numbers leading to low competition between the individual plants. The average plant heights in both villages is illustrated in Figure 14.

4.1.2.1 Boyargyi

Just before transplanting F2 and F3 showed a plant height average of 75.1 cm, followed by L3 (65.4 cm) 0T (61.5 cm), L1 (60.9 cm) and L2 (55.4 cm). S3 (49.4 cm), F1(46.4 cm) and S2 (43 cm) had average plant heights above 40 cm with only S1 remaining underneath this value with an average plant height of 36.8 cm. The influence of the variety on the plant height was significant. A further analysis of the data through a Dunn's/Bonferroni Test revealed that S1 had a significantly lower plant height than all other varieties except S2. F2 and F3 on the other hand showed the highest value, being significantly higher than all other varieties.

The exceptionally high values observed in F2 and F3 can be explained by their generally low emergence rate. The low competition enabled the few remaining plants to develop faster than the seedlings of the other varieties. It was to expect that the local varieties would show higher average plant heights, as high-yielding improved varieties usually have shorter growth, as they reach the higher yields by improving the harvest-index.

Zokekali

The average plant height before transplanting was lower in Zokekali (36.9 cm) than in Boyargyi (56.9 cm), starting with OT at 44.9 cm. L2 (44.7 cm), L1 (43.1 cm) and L3 (41.364) displayed similar plant heights to OT, with the salt tolerant varieties and F1 remaining under an average height of 40 cm (S2 32.9 cm, S3 32.4 cm, F1 32.1 cm, S1 23.8 cm). The variety also had a significant influence on plant height in Zokekali. The multiple comparison test revealed that S1 was significantly shorter than all other varieties while OT was significantly higher than S1, F1, S2 and S3. F2 and F3 have not been measured, as the number of plants was insufficient and the trial was continued without those two varieties. The traditional varieties also show the expected higher average plant height compared to the salt and submergence tolerant varieties.

4.2 Growth Parameters

Parameters such as plant height, number of tillers and leaf colour help monitor the development of the rice plant throughout the entire growing period and can be helpful when identifying reasons for low or very different yields. The following chapters will elaborate the values observed in both Boyargyi and Zokekali.

4.2.1 Plant Height

The influence of the varieties on the plant height, when comparing the data from one measurement date was significant in both villages throughout the entire growing period. The expected pattern of the local varieties being generally taller than the newly introduced ones was observed in both villages. OT, L2, L3 being taller and F1, S1, S2 being shorter respectively were particularly noticeable. The plant height ca be used as an indicator for vigour or to draw conclusion regarding the genotype or origin of the variety. Furthermore, the development of plant height during and after a flood can be related to the expression of the SUB-1 QTL. Varieties expressing this submergence tolerance should grow considerably less while submerged, but struggle less once the water has reclined. The plant height was influenced by different

Figure 12 Plot Number 1, 3 Days after Peak-Flood, Boyargyi

exterior factors. A flood only two weeks after transplanting led to complete submergence for multiple days in Boyargyi (Figure 15). This slowed down the development of the plants, and the local varieties were smaller after 11 weeks compared to Zokekali. F1, S1, S2 and S3 on the other hand were smaller in Zokekali compared to Boyargyi at that time. This can be partly attributed to damage caused by rodents (most probably rats) starting 7 weeks after transplanting in Zokekali. The rodents destroyed the stems of the plants in order to reach the developing panicle, which resulted in death or re-emergence of the plants Other possible reasons for the difference are lower water levels and/or higher salinity levels.

4.2.1.1 Boyargyi

The varieties showed significant differences throughout the entire growing period in Boyargyi, except for the measurement 3 weeks after transplanting, where the influence of the factor variety was significant, but no groups were clearly different from each other. This might be due to high variability of the data resulting in less significant results. As can be seen in Table 7, the varieties that are mostly statistically significant were S1, S2, L2 and L3. S1 was smaller than other varieties on ten of eleven measurements, while smaller values were observed nine times in S2. F1 was significantly smaller than L2 five and six weeks after transplanting. L3 and L2 on the other hand had higher values on eight data collection dates. The other significant differences to S1 and S2 were L1 (six times), OT (two times) and F2 (one time). Eleven weeks after transplanting, the local varieties showed similar average plant heights (OT 94.27cm, L1 96.46cm, L2 100.67cm, L3 95.07cm) followed by F2 (91.83cm) and S3 (90.97cm). The average values of the three IRRIbased varieties were all close to 85 cm (F1 84.86cm, F3, 86.96cm, S2 84.56cm) while Pyimyanmarsein (S1) only reached 74.22cm

Table 7 Significant Differences Boyargyi - Plant Height

boyargyr mant height			
Weeks after	Significant dif-		
Transplanting	ferences		
1	S1 <l1, f2<="" l3,="" th=""></l1,>		
	S2 <l3< th=""></l3<>		
2	S1 <l3, 0t<="" th=""></l3,>		
3			
4	S1, S2 <l2< th=""></l2<>		
5	S1, S2, F1 < L2		
	S1, S2< L3		
6	S1, S2, F1 < L2		
	S1, S2< L3		
7	S1, S2 <l1, l2,<="" th=""></l1,>		
	L3		
8	S1 <l1< th=""></l1<>		
	S1, S2< L2, L3		
9	S1< 0T, L1, L3		
	S1, S2 < L2		
10	S1 < L1, L3		
	S1, S2< L2		
11	S1 <l1, l2<="" th=""></l1,>		

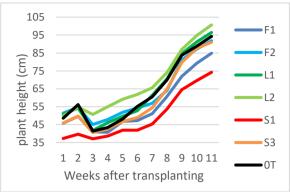


Figure 13 Evolution of Plant Height F1, F2. L1, L2, S1, S3 and OT, Boyargyi

Figure 16 shows the evolution of the plant height over the 11 weeks in Boyargyi. The varieties displayed are OT, F1, F2, L1, L2, S1 and S3. The peak two weeks after transplanting can be explained by the flood that occurred during that week, completely submerging our plots for 4-5 days. The natural response of rice plants to submergence is to outgrow the water. Plants expressing the SUB-1 QTL should stop their growth during submergence. It is difficult to observe this in the data, as there is a very high variability within the varieties and data collection had the be conducted after the water had partially reclined (access to the village was not possible for several days during the flood). The water reached peak levels of up to 100cm above field level. Depending on the plot, drainage was difficult, due to limitations in outflow to the canal. This resulted in a stagnant flood over the course of 2 weeks. This may be one of

the reasons why F1, that is known to be well adapted to submergence, might have struggled. Once the water was drained many plants collapsed, which can be observed as a dip in plant-height from week two to three. The prolonged submergence led to a very long growth inhibition that slowed down the plants' development. As mentioned, the local varieties were expected to outgrow the newly introduced varieties due to their genetic disposition. F2 and S3 were bred based on or using local genetics from Myanmar, which is probably why they show average plant heights close to the traditional varieties.

4.2.1.2 Zokekali

The varieties were also different in Zokekali throughout the entire growth period. The varieties showing the most significant differences were F1, S2, OT and L2. As visible in Table 8, S2 showed lower values than other groups on all 11 dates, while F1 did so 9 times. S1 showed significantly smaller plants on four dates. Significantly higher average plant heights were observed with 0T and L2 eleven and nine times, respectively. L1 (three times) and L3 (five times) were the other significantly taller varieties. Also in Zokekali the traditional varieties showed similar average plant heights (0T 115.93cm, L1 111.10cm, L2 107.63cm, L3 111.25cm) with S3 (80.40cm) being the only other variety reaching more than 80 cm average plant height. F1 (66.93cm), S1 (66.22cm) and S2 (60.44cm) averaged close to 65 cm.

Table 8 Significant Differences Zokekali - Plant Growth

Weeks after Transplanting	Significant differ- ences
1	SMCT: F1, S2< 0T, L1, L2, L3 S1, S3<0T, L2
2	S1<0T S1, S2, F1< L2
3	S2 <l2 S1, S2<0T</l2
4	F1, S2<0T, L2
5	S2 <l1, l2,="" l3<br="">F1, S2<0T</l1,>
6	F1, S2<0T, L2, L3
7	S2 <l2 F1, S2<0T, L3</l2
8	F1<0T, L1, L2 F1, S2 <l3< th=""></l3<>
9	F1, S2<0T
10	S2<0T, L3
11	S2 <l2 F1,S1,S2<0T</l2

Figure 17 shows the development of the average plant height in Zokekali over the course of the 11 weeks of observation. The varieties displayed are 0T, F1, L1, L2, S1 and S3. As you can clearly see, the

Figure 17 Evolution of Pant Height F1, L1, L2, S1, S3

decrease of plant height observed in Boyargyi is missing. There was no flood in Zokekali, which means that the plants developed very different than in Boyargyi. This allows us to observe two different and very probable scenarios for the region: a year with and a year without flood. When recommending varieties for the use in this region, it is important that they can cope with both situations, as they are equally frequent and very difficult to predict. Seeing the performance of submergence tolerant varieties in an environment without flood enables broader conclusions. A particularity is the stunted growth of F1, S1 and S3 after 6/7 weeks. This stagnation of growth is due to damages caused by rodents (Figure 18). The varieties mentioned, with the addition of S2, started to flower around that time. No other plants in the entire region were flowering, as the local varieties have a longer growth period and de-

pend on the end of the rainy season for flowering. This attracted a lot of rodents that caused damage to panicles and to entire plants. The varieties had to develop new tillers, leaves and panicles, which slowed down their development. As the local varieties seemed not at all affected by this, it is not entirely sure how much of the damage caused by rodents is to be associated with the earlier flowering, the smaller plant height or the small plot size.

Figure 14 Damage Caused by Rodents with Plots of S1 and S2 on the Left and Centre Front, F1 in the Central Plot in the Backline

4.2.2 Number of Tillers

The number of tillers is an important indicator for potential yield as it ultimately limits the number of panicles and thus the number of grains. A variety that usually has a high yield might not be able to exploit its potential due to nutrients or space limiting the development of tillers. No significant influence on the number of tillers was found throughout the growing period in both villages. Only on one date, 9 weeks after transplanting, a significant influence of the varieties on the number of tillers was observed in Zokekali, but no groups were different from each other. Especially in the first half of the growing cycle the difference between the averages of the farmers were bigger than the differences between the varieties. In conversation with locals and specialists the high variability of the soil and nutrient supply were highlighted.

4.2.2.1 Boyargyi

No significant influence of the varieties on the number of tillers was observed in Boyargyi. This can be partly attributed to strong differences between the plots. Two weeks after transplanting the averages of the plots varied from 3.96 (Nr.2) to 8.32 (Nr.4) tillers/hill while the average values of the varieties stayed between 4.62 (F3) to 6.30 (F2) tillers/hill. Four weeks after transplanting the farmers values ranged from 4.22 (Nr.5) to 6.44 (Nr.4) and the varieties' values averaged between 4.25 (S2) and 6.1 (S1), except for 0T averaging 2.84 tillers per hill. These low values can be associated to the damages caused by the flood in Boyargy. After the flood many plants were

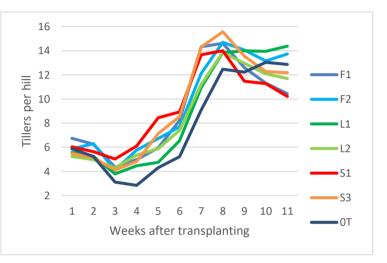


Figure 16 Evolution of Number of Tillers F1, F2, L1, L2, S1, S3 and OT, Boyargyi

covered by mud, lost leaves or even died off, this lead to a lower number of tillers. From this date onwards, the difference between plots started to reduce compared to the variability within varieties. Seven weeks after transplanting the plots showed averages of 10.57 (Nr.5) to 14.18 (Nr.3) tillers per hill while the varieties varied from 9.08 (0T) to 14.34 (F1) tillers/hill. Towards the end differences between certain plots started to become more noticeable again. On the last data collection date, plot

Figure 15 Damage by Rodents Plot Number 2, F1, Boyargyi

more noticeable again. On the last data collection date, plot number 3 showed a very high average value of 15.33 tillers/hill. This is more than 1,5 times the number of tillers compared to plot number 4, that only averaged 9.78 tillers per hill. The differences between the varieties were even higher, ranging from 7.96 (F3) to14.38 (L1). The effects of the flood can also be observed when looking at the development of tillers throughout the growth period. The values of the varieties 0T, F1, F2, L1, L2, S1 and S3 are displayed in Figure 19. After 2 Weeks, all varieties show reduced numbers of tillers to different extent. 0T was very strongly affected by the flood, but was able to reach values similar to the other varieties after 9 weeks. After 7 weeks the varieties started hitting plateaus regarding the number of tillers. Especially the newly introduced varieties reduced the number of tillers in the following weeks, while 0T's and

L1's values continued to increase. The most noticable decreases are the ones from F1, S1 and S3. F1 and S1 dropped from nearly 14 close to 10 within 3 weeks. S3 dropped from close to 16 to 12 in the same timeframe. The to nutrient deficiency and/or pressure through pests and

locals mostly attributed this reduction to nutrient deficiency and/or pressure through pests and

diseases. The damages caused by rodents were less severe than in Zokekali but still present (Figure 20). The rodents either ate the whole pannicle or damaged the stem to a degree that it would break and fall down. This leads to the death of the plant or in the best case to a reemergence of the panicle a few weeks later with extremely reduce number of spikelets.

4.2.2.2 Zokekali

The data was distributed similar to Boyargyi during the first weeks. Two weeks after transplanting the farmers showed values from 5.85 (Nr. 2) to 10.56 (Nr.5) while the varieties only ranged from 6.44 (S2) to 8.54 (0T). Two weeks later the tendency was still the same with the plots reaching values from 9.8 (Nr.1) to 18.13 (Nr.5) and the varieties show average values between 10.26 (S2) and 15.12 (OT). In Zokekali the farmers continued to show bigger differences than the varieties. 7 weeks after transplanting the average of the plots varied between 12.96 (Nr.2) and 21.1 (Nr.3) while the varieties showed values from 13.90 (S2) to 20.00 (0T). Nine weeks

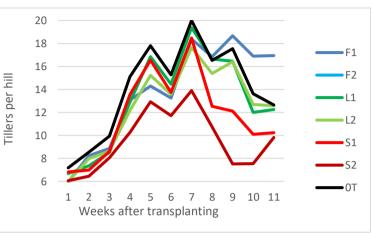


Figure 17 Evolution of Number of Tillers F1, F2, L1, L2, S1, S2 and OT, Zokekali

after transplanting the Friedman Test showed a significant influence of the factor variety on the number of tillers (Friedman's Test, 8 factors, 5 blocks; Q=17.00, p=0.02), but no groups were different from each other. The plots showed average values rom 9.65 (Nr 5) to 21.58 (Nr.1) highlighting the big differences between the plots. The varieties also showed very different values, rangin from 7.51 (S2) to 18.67 (F1). These values normalised towards the end of the observation period. Eleven weeks after transplanting the plots' averages only varied between 9.83 (Nr.2) to 17.28 (Nr.1) while the varieties stayed between 9.82 (S2) and 16.94 (F1) (Figure 21).

Figure 18 Rodent Damage, Plot 2, S1, Zokekali

The reduction of tillers after 7/8 weeks can also be observed in Zokekali, but here it is much more difficult to clearly attribute the reduction of tillers to one or two factors. As already mentioned the differences between the plots were very big, meaning that the averages displayed above only show an incomplete image. The reduction of tillers, especially in the two salt-tolerant varieties is mostly due to the damages by rodents (Figure 22). The early flowering varieties (F1, S1, S2, S3) were most affected by this. F1 still shows very high values due to its sub-plot from farmers nr.1. The

variety had been strongly affected by snails in the first weeks. This resulted in a very low number of plants surviving in this plot. The remaining plants

had very little competition and developed abnormally high number of tillers.

4.2.3 Leaf Colour Index

The leaf colour index can be used as an indicator for the plants health or nutrition status. The values range from 1 to 5, the higher the index the healthier the plant is. Locals stated that leaf yellowing was usually a sign of salinity while leaf colour is also often used to evaluate nitrogen supply of the plant. This is why this index will be used as a general indicator of plant health. The varieties had different influences on the leaf colour index in the two villages. Both villages had seen very different issues throughout the season and the reaction to those issues where thus also varied. There are some insecurities regarding the quality of the data collected. The index is based on personal perception and visual assessment, which is why the results should be interpreted with care. If this data were to be collected in a next trial, it is very important that the data collection method is very clearly defined to avoid a distorted analysis. This Index, or leaf colour in general, should be used as an indicator for the plants health and their nutrient supply. Optimally farmers would check their fields regularly and fertilize accordingly. A value of 4 is desirable and values below should be answered by nitrogen fertilisation. Taking into account the extensive production in the Gulf of Mottama, other standards might be better suited for this region. The next chapters will elaborate on some observed tendencies.

4.2.3.1 Boyargyi

The varieties had a varying influence on the leaf colour index over the course of the growing period in Boyargyi. No significant influence of the varieties on the index was observed two, five, nine and ten weeks after transplanting. The varieties that mainly stand out are 0T, L1, and S1. As can be seen in the summarised statistical results in Table 9, 0T showed significantly lower values on five dates while L1 did so four times. F2 (three times), S2 (two times) and L3 (once) made up the other significantly lower groups. S1 showed significantly higher leaf colour index on seven of the eleven dates. The other varieties that showed a significantly higher index were F3 (once) and S3 (once).

In Figure 23 the evolution of the leaf colour indices of OT, F3, L2 and S1 are displayed. The data from the first weeks is not displayed as the plants are prone to stress

after transplanting. The data displayed shows the development after the flood. All varieties were

strongly affected by the flood and showed damage to leaves (Figure 24). Some varieties, OT in particular, completely lost certain leaves and had to develop new ones. S1 Pyimyanmarsein already showed a darker leaf colour in the nurseries and was also the quickest variety to recover from the submergence regarding leaf colour. On the question why a salt resistant, rather than a submergence tolerant variety, was recovering the fastest after the flood, Mr Tun Zaw Htay, who had helped select the plots, explained the results through the soil salinity. The other varieties were already stressed by salinity and snails after transplanting. Due to this they entered the

phase of submergence

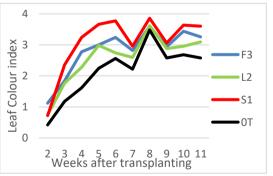


Figure 19 Evolution of Leaf Colour Index F3, L2, S1 and 0T, Boyargyi

weakened and once the water retreated were again challenged by rising salt pressure. High water levels help to push the salt out of the topsoil, but as the drainage systems are not very effective nor reliable, a controlled water level that would support the plants is difficult to achieve. The two dips seven and nine weeks after transplanting might be credited to nutrient limitations, increasing salt-

Weeks after	
Transplanting	Significant differences
1	L1 <f3< th=""></f3<>
	0T <f3, s1<="" th=""></f3,>
2	
3	L1, S2 <s1< th=""></s1<>
4	0T, L1, S2 <s1< th=""></s1<>
5	
6	0T, F2, L1 <s1< th=""></s1<>
7	0T <s1< th=""></s1<>
8	F2 <f1, s1,="" s3<="" th=""></f1,>
9	
10	
11	0T, F2, L3 <s1< th=""></s1<>

bernoise | Bern University of Applied Sciences

pressure through decreasing water levels and pests (rodents, snails, insects). Some differences can also be attributed to different lighting conditions and different people collecting the data. For future research it should be defined clearly who collects this data, when and how to avoid distortion of the data. The rodent issue that we encountered in Zokekali was not as prominent in Boyargyi and affected mostly the panicles, not the leaves. This can be explained by higher water levels in most of the plots in Boyargyi. High water levels reduce some of the pressure by rodents and restrict the damages on the upper parts of the plant, giving a higher chance of recovery.

4.2.3.2 Zokekali

As can be seen on Table 10, the influence of the varieties on the leaf colour index was only significant on four dates in Zokekali. From five until seven weeks after transplanting higher values were registered for F1. L3 was lower an all three of these dates, while on the 7th measurement date 0T and L1 were also observed brighter or damaged. Ten weeks after transplanting S2 had significantly lower values than 0T, L1 and L3.

Figure 25 shows the observed values of 0T, F1, L1, L3, S1 and S2 during the 11 weeks of observation. Once established after transplanting, F1 and S2 showed very dark leaf colour throughout the first seven weeks. From week seven onwards these two varieties and S1 were affected by heavy rodent damages, destroying big parts of the trial plots (Figure 26). This is visible as a strong drop in index values of these varieties. Once they had re-established new tillers and leaves, the other varieties had also started flowering. All varieties ended the season on similar values, but the short cycle varieties experienced a very heavy setback through rodents during more than two weeks.

Table 10 Significant Differences Zokekali - Leaf Colour Index

Weeks after	Significant differences
Trans-	
planting	
1	
2	
2 3	
4	
5	L3 <f1< th=""></f1<>
6	L3 <f1< th=""></f1<>
7	0T, L1,
	L3 <f1< th=""></f1<>
8	
9	
10	S2<0T, L1,
	L2
11	

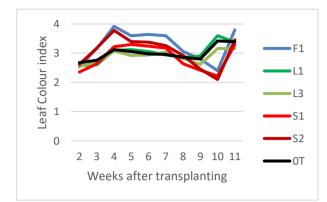


Figure 22 Evolution of Leaf Colour Index F1, L1, L3, S1, S2 and OT, Zokekali

Figure 21 Rodent Damage Plot Number 5, F1, Zokekali

4.3 Harvest

The performance of a variety is ultimately defined by its productivity until harvest and the accomplished yield. Several parameters were recorded at harvest and will be compared to illustrate the characteristics of the varieties and their yield. Significant influences and differences among the varieties were observed in both villages and most parameters. The data was collected on the day of harvest, meaning that the length of the growing period might vary between the varieties. Harvesting was done an average of 3 days later in Zokekali (133.85 days after transplanting) compared to Boyargyi (130.98 days after transplanting). Most of this difference is due to the local varieties. OT was harvested an average of 4.4 days later in Zokekali, while L1 (6.2 days), L2 (11.6 days) and L3 (4.2 days) all had later harvest dates too. Only S3 (7.2 days) of the newly introduced varieties was harvested a week later in Zokekali. The other varieties (F1 -0.6 days, S1 0.8 days, S2 -0.4 days) stayed within one day of average harvest time of their counterparts in Boyargyi. Without the damage caused by rodents and late rains, these varieties would have been ready for harvest at least two weeks earlier. The shortest average cropping cycles were observed in S3 with 127.3 and F1 with 129.1 days after transplanting, while the longest ones were observed in F2 (140.8) and L3 (138.1). It is not entirely clear what lead to the later harvesting dates in Zokekali, as usually floods lead to a delayed harvest as it delayes the plants development depending on the period of submergence. Following this logic, the harvest in Boyargyi should have been later. Rodent damages or high soil salinity might be reasons for the late harvest. Furthermore, the rainy season started late in 2017 and the rains went on until mid of October, which is late compared to the preceding years. The overall average harvesting date was 132.65 days after transplanting. These differences should be kept in mind when studying the data presented below.

4.3.1 Number of Hills and Plant Height

The number of hills and the plant height can be indicators to how well the different varieties have coped with the environment. Assuming a similar or identical transplanting density, the number of hills can be a measurement of survivability, while plant height can help to draw conclusions regarding the varieties genotype and vigour. Even though the submergence tolerant varieties should be genetically able to cope with the flash flood that occurred in Boyargyi, the local varieties seemed to be better adapted to the environmental stress. They generally showed higher hill

counts than their newly introduced counterparts. This might be explained by a stagnating flood following the Figure 23 Heavily Reduced Plant Number after Flood flash flood, and varieties expressing the SUB-1 gene in Plot 5, F1, Boyargyi are known to struggle with stagnating floods. Other

factors like nutrients, pests and diseases might have further influenced those parameters. In Zokekali, no significantly different groups were observed when comparing the number of hills in the harvested sample plot, which suggests that most of the differences in Boyargyi was due to the flood and its consequences. Somewhat expected tendencies regarding plant height were observed in both villages, with the traditional varieties outgrowing the "improved" varieties. Issues with pests increased this discrepancy, particularly in Zokekali. It is not possible to separate certain environmental factors and their influence on the performance of the varieties. Further and more detailed research would be needed to clearly correlate a certain factor to an observed performance. The low hill count will have surely resulted in lower yields. The farmers will prefer plants with a strong vigour and that can survive within the conditions present in the two villages. The local varieties seem to better cope with the stresses present in the Gulf and generally show higher numbers of survival. The following chapters will present the data collected.

4.3.1.1 Boyargyi

There was a significant difference between the varieties regarding the number of remaining hills in Boyargyi. The local varieties showed higher survival rates than the newly introduced ones. Only S3 (64) had an average value of hills close to OT (75), L1 (67.2), L2 (71.4) and L3 (80). F1 (47), F2 (54.6) and F3 (57.2) showed the lowest numbers of surviving plants (Figure 28). The two remaining salt tolerant varieties (S1: 61.6, S2: 57.2) averaged close to 60 hills on the sample plot. As presented in Table 11 F1 and F2 had significantly less hills than all the local varieties and S3, while F3 and S2 only had lower values than OT and L3. S1 only had significantly less hills than L3. Looking at plant height there was also a significant influence of the varieties in Boyargyi. F1 (94.27cm) had the lowest average plant height, being significantly shorter than OT (132.53 cm), F2 (149.53cm), L1 (134.54cm) and L3 (130.40cm). S2 (96.27cm) had the second lowest average height, being smaller than F2 and L1, and F3 (97.85cm) only being significantly smaller than F2 (Figure 29).

Table 11 Significant Differences Boyargyi -Number of Hills and Plant Height

Number	F1, F2<0T,
of Hills	L1, L2, L3,
	S3
	F3, S2<0T,
	L3
	S1 <l3< th=""></l3<>
Plant	F1<0T, F2,
Height	L1, L3
	S2 <f2, l1<="" th=""></f2,>
	F3 <f2< th=""></f2<>

It is very unexpected to have flooding/submergence tolerant varieties be the ones with the lowest survival rate in plots that were affected by severe flooding. The complexity of issues reducing the plant numbers seems to outweigh the genetical resilience to submergence present in these varieties. It is unclear whether pests and diseases, salinity or nutrient deficiency were the main reasons for the high losses observed in those varieties. Some submergence tolerant varieties also struggled with stagnant flooding before or after the complete submergence, which was the case in Boyargyi when the water levels only slowly decreased in some plots. The results regarding plant height were mostly expected. F2 showed a phenotype closer to the local varieties than to the newly introduced ones, also characterized by a tall plant. This might be explained by it mostly being based on local Myanmar varieties.

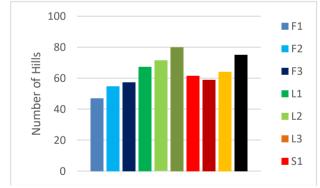


Figure 25 Boyargyi - Average Number of Hills

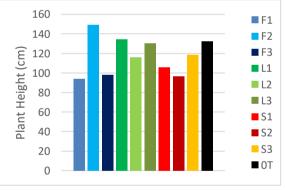


Figure 24 Boyargyi - Average Plant Height

eties.

4.3.1.2 Zokekali

The varieties had no significant influence on plant survival in Zokekali. Most of them averaged between 60 and 70 hills (F1 67, L1 69.2, S1 62.8, S2 63.4, S3 69) except for 0T (70.4), L2 (71.8)

and L3 (58.6) (Figure 30). A significant influence of the varieties on plant height was observed, with S2 (63.46cm) having lower values than L1 (137.5cm), L2 (132.0cm) and L3 (136.15cm). S1 (69.35cm) was only significantly shorter than L1 and L3 (Table 12). OT (135.70cm), F1 (96.08cm) and S3 (105.84cm) were not different to any other groups (Figure 31).

Table 12 Significant Differ-
ences Zokekali - Number of
Hills and Plant Height

Nr. Hills	
Plant Height	S2< L1, L2,
	S1 < L1, L3

The very similar survival rates of all varieties emphasize the complexity of the environmental issues. The salt tolerant varieties and F1 had issues with rodents and the local varieties struggled with salinity and snails at different points throughout the season. The difference in plant height was expected as the newly introduced varieties are characterized by shorter growth. The extremely low values of S1 and S2 might be further explained by the rodent damages that were observed from six weeks onwards. F1 and especially S3 were either able to recover faster after the damages, or were less affected by them.

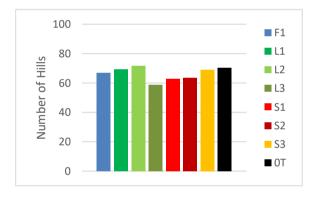


Figure 26 Zokekali - Number of Hills

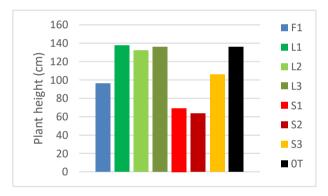


Figure 27 Zokekali - Plant Height

4.3.2 Number of Tillers and Panicles

The yield a variety can produce is directly dependent on the number of tillers and panicles a plant can produce. The influence of the varieties on the number of tillers and panicles per hill has been significant in both villages, but only few groups showed significant differences. Some of these differences may be attributed to low plant density due to damage by snails (Figure 32). The low competition results in plants with above average tiller numbers. Other plots, especially in Zokekali, have been heavily damaged by rodents, decreasing the number of tillers and panicles. This will have a negative impact on the yield of the affected

varieties and they will not be able to reach their full potential. More detailed data would be needed to define the environmental factor that has the most influence on the development of tillers and panicles. The transplanting technique used in the Gulf of Mottama places the seedlings lower into the ground than conventional transplanting by hand resulting in lower numbers of tillers. Nutrients might

also be a limiting factor and the pressure from pests and diseases probably has a strong impact on the development of the plants. The higher number of tiller in the plots with low competition are not able to compensate for the loss of yield, so directly linking the average number of tillers to yield is not possible. The following chapters will extend on the data in more detail.

4.3.2.1 Boyargyi

18

There was a significant influence of the varieties on the number of tillers and the number of panicles observed at harvest, but no groups were significantly different from each other in Boyargyi. Significantly more panicles per tiller were observed in L1 (0.98) compared to F2 (0.92) (Table 13). remarkable values are L1 (16.1) S2 (12.44) and OT (11.12) with high numbers of tillers per hill and L3 (8.56) and S1 (8.64) with the lowest average number of tillers (Figure 33). The same three varieties also had the highest average number of panicles (L1 15.08, S2 12.2, OT 10.82) while L3 (8.26) and F1 (8.3) had the lowest values. The highest panicles per tiller ratios after L1 were S3 (0.97), L3 (0.96) and F3 (0.96).

Table 13 Significant Differences Boyargyi - Number of Tillers and Panicles

Nr. Tillers	
Nr Panicles	
Panicles	F2 <l1< th=""></l1<>
per Tiller	

F1

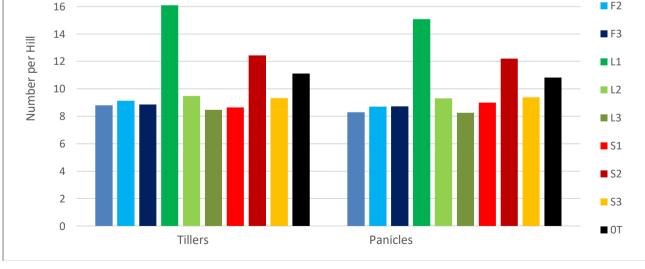


Figure 28 Plant with Low Competition and

High Tiller Count

Jungblut B

4.3.2.2 Zokekali

The varieties had a significant influence on the number of tillers and panicles in Zokekali. As can be seen in Table 14, a lower number of tillers per hill was observed in S3 (9.86) compared to F1 (18.08), while lower numbers of panicles were recorded in S2 (6.66) compared to F1 (12.589 and L1 (12.72). F1 (0.76) developed less panicles per tiller than OT (0.95), L1 (0.96) and S3 (0.94).

The high tiller values of F1 (Figure 34) can, at least to some extent, be explained by plot number one in Zokekali, where F1 had big losses at early stages through snails. This left few plants that could then grow with little competition and developed many tillers. The nutrients supplied by the soil,

Table 14 Significant Differences Zokekali - Number of Tiller and Panicles

Nr Tillers	\$3 <f1< th=""></f1<>
Nr. Pani-	S2 <f1, l1<="" th=""></f1,>
cles	
Panicles	F1<0T, L1,
per Tiller	S3

added by fertilisation or the plant's capacity to absorb them, where not sufficient to develop panicles in all of the tillers, which might explain the low panicle per tiller values.

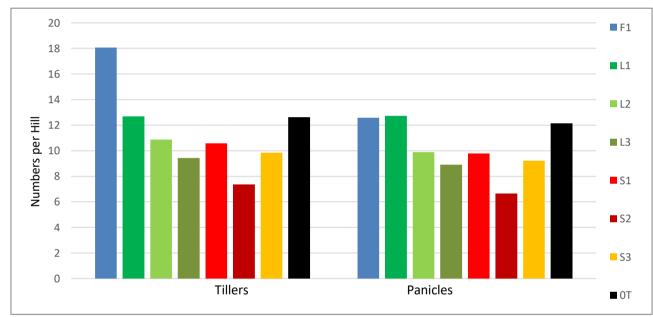


Figure 30 Zokekali - Number of Tillers and Panicles

4.3.3 Panicle Length and Number of Spikelets

The panicle length and number of spikelets are common yield indicators and can be used to explain exceptionally high or low yields. The varieties clearly showed an influence on the characteristics of the flower development in both villages. S3 Sinthwelatt showed good values regarding panicle length and number of spikelts in both villages, while S1 Pyimyanmarsein and S2 IR-11T255 had very low values in Zokekali. This may be due to the rodent damages that occurred when those varieties first flowered. The second generation of panicles that they developed afterwards was a lot smaller

and had less grains. In Boyargyi, low values were observed in F1 Swarna Sub-1 which can partly be explained by similar factors (Figure 35). These re-

Figure 31 Damage to Panicles Caused by Insects, Boyargyi

emerged panicles surely did not reach the full potential of the plants and will have led to lower yields. It is unclear whether a later sowing date, resulting in simultaneous flowering times, would have reduced the damage or if the newly introduced varieties are generally more susceptible to rodents and other pests. It is also possible that bigger surfaces of the same variety might have led to lower pressure. Higher yields could be expected from all varieties that were affected by these conditions, but it is unclear how much factors apart the rodents influenced the development of the panicles. Further research is needed to link certain factors or practices to the performance of certain varieties. The results will be presented below.

4.3.3.1	Boyargyi
---------	----------

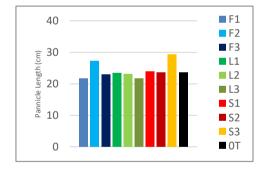
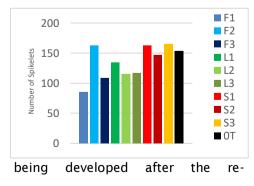



Figure 32 Boyargyi - Panicle Length

The influence of the varieties on the panicle length as well as the number of spikelets was significant (Table 15). The most significant varieties are F1, F2 and S3. F1 (21.72cm) and L3 (23.08) had significantly shorter panicles than F2 (27.28cm) and S3

Table 15 Significant Differences Boyargyi - Panicle Length and Number of Spikelets

Panicle	F1, L3 <f2,< th=""></f2,<>
Length	S3
Number of	F1 <f2, s1,<="" th=""></f2,>
Spikelets	S3

(29.29 cm). The rest of the varieties had very similar average panicle length, with all varieties except F3 (22.99cm) remaining between 23 and 24 centimetres (Figure 36).

A lower number of spikelets was observed in F1 (85.2) compared to F2 (162.14), S1 (162.2) and S3 (165.16). OT (152.94), S2 (146.8) and S3 (165.16) had average numbers of spikelets above 140, while F3 (106.96), L2 (115.2) and L3 (117.14) remained under this value (Figure 37).

F1 Swarna Sub-1 was the first variety flowering in Boyargyi, which made it susceptible to the same rodent attacks that damaged the trials in Zokekali. Even though the damage was not as severe, it still showed in a significantly smaller panicle

Figure 33 Boyargyi - Number of Spikelets

emergence.

4.3.3.2 Zokekali

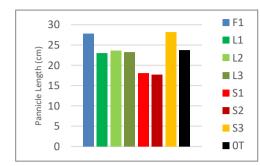


Figure 34 Zokekali - Panicle Length

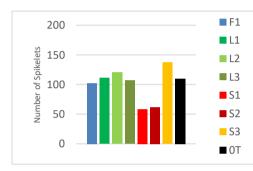


Figure 35 Zokekali - Number of Spikelets

to invest into the development of new, much smaller panicles, that had less spikelets. Even though F1 started to flower earli-

er, it seemed less affected by this, or was able to recover some of the damage. Especially S3, with the longest panicles and the highest average spikelet count, was clearly less affected by the rodents. The reasons for this selective damage are not entirely

clear and the very clear differences between the varieties should be further investigated.

Table 16 Significant Differences Zokekali - Panicle Length and Number of Spikelets

Panicle	S2 <f1, s3<="" th=""></f1,>					
Length	S1< S3					
Number of	S1, S2 <l2,< th=""></l2,<>					
Spikelets	S3					

smaller panicles than F1 (23.62) and S3 (28.19). S1 (17.64) was only different from S3. The other varieties all had average panicle lengths between 22 and 24 centimetres (Figure 38). S1 (58.04) and S2 (61.76) had less spikelets per panicle than L2 (120.18) and S3 (137.48). F1 (102.26) has the next smallest average number of spikelets with 0T (110.16), L1 (111.26) and L3 (106.92) averaging values close to 110 (Figure 39).

The two salt tolerant varieties S1 Pyimyanmarsein and S2 IR-11T255 were the two varieties that suffered most from the

rodent damages (Figure 40). This had a strong impact on the development of their panicles. As their first panicles had all been destroyed, they had

Also in Zokekali the analysis

showed a significant influ-

ence of the varieties on the

panicle length and the num-

ber of spikelets per panicle

(Table 16). The most noticea-

ble varieties regarding panicle

length are L2, S1, S2 and S3.

S2 (17.64cm) had significantly

Figure 36 Rodent Damage Plot Number 3, S2, Zokekali

4.3.4 Yield

The yield a variety can achieve is often the most important factor for adoption and is responsible for the food security and/or the income of the farmer. The ten (eight for Zokekali) tested varieties had significantly different yields in the villages, with S3 Sinthwelatt showing the highest average yield in both. L2 Kyarpyan also showed a significantly higher yield in Zokekali, while S2 IR-11T255 had low yields in both environments. The newly introduced varieties, with the exception of S3, were not able to outperform the locally present varieties under the current conditions. S3 Sithwelatt showed consistently good performance throughout all observed parameters, which might be an explanation for its high yield. Even though the local varieties had more or roughly the same number of tillers and panicles, S3 Sinthwelatt had longer panicles with higher numbers of spikelets. The very low number of spikelets observed in S1 and S2 in Zokekali, which may be due to heavy rodent damages, might explain the very low yields obtained for these varieites. The panicle length and number of spikelets of F1 might be inflated due to certain plots with low competition; this may be an explanation for the underperformance of F1 in Zokekali. The low yields of all flooding tolerant varieties in Boyargyi might partly be explained by the low number of hills remaining at harvest. Even though they should be resilient to submergence, the other factors like stagnant water levels, pests and nutrients seem to have outweighed the capacity to tolerate submergence. The very consistent performance of the local varieties can be a hint to why the farmers chose to still cultivate these varieties. They had the highest survival rates in Boyargyi and seemed to be well adapted to the stress prone extensive production present in the Gulf of Mottama. S3 Sinthwelatt seems to be able to reach comparable yields or even outperform the local varieties, but the farmers stated issues with the eating properties of this variety, which may lead to problems regarding its adoption. Further research is needed to assess how the "high-yielding" varieties would perform with different cultivation practice and production intensity. From the obtained results it is not possible to clearly recommend one of the new varieties for the region, as it is unclear whether farmers might accept Sinthwelatt, even though its eating properties are less desired, or change their cultivation practice. The results will be presented below.

4.3.4.1 Boyargyi

The varieties had a significant influence on the yield in Boyargyi. S2 (12.46 basket/acre, 0.95 t/ha) showed lower yields than S3 (61.84 basket/acre, 3.38 t/ha) when measured in volume as well as in weight. The local varieties all averaged yields above 2 t/ha (0T 2.57 t/ha, L1 2.08 t/ha, L2 2.94 t/ha, L3 2.56 t/ha) while the remaining varieties averaged between 1.2 and 1.7 tonnes per hectare (F1 1.64 t/ha, F2 1.48 t/ha, F3 1.24 t/ha, S1 1.53 t/ha). It is noteworthy that even though 0T has a higher yield than L3 when compared

Table 17 Significant Differences Boyargyi -Yield

Basket/Acre	S2 <s3< th=""></s3<>
t/ha SP	S2 <s3< th=""></s3<>

in weight, the same samples compared in volume benefit L3 (0T 39.92 basket/acre, L3 50.38 basket/acre). This should be kept in mind when calculating weight from volume or vice versa, as often standard conversion rates are used. Some of the millers and most of the farmers still use volume as a measurement for quantity, which is why both values were recorded.

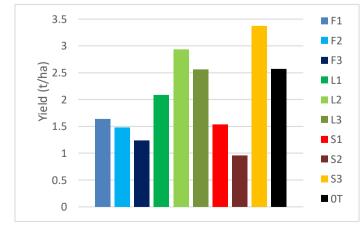


Figure 37 Boyargyi - Yield

4.3.4.2 Zokekali

In Zokekali the analysis of the harvest revealed significant differences between certain varieties (Table 18). Significantly higher yields were reported for L2 (72.61 basket/acre) and S3 (78.35 basket/acre) compared to F1 (21.99 basket/acre), S1 (28.19 basket/acre) and S2(17.69 basket/acre). When comparing the yields in weight, the difference was only S2 (0.99 t/ha) was significantly lower

Table 18 Significant Differences Zokekali - Yield

Basket/Acre	F1, S1, S2 <l2,< th=""></l2,<>
	S3
t/ha SP	S2 <l2, s3<="" th=""></l2,>

than L2 (3.99 t/ha) and S3 (4.05 t/ha). The local varieties (OT 3.42 t/ha, L1 2.71 t/ha, L3 2.22 t/ha) also averaged yields above 2t/ha in Zokekali, while F1 (1.45 t/ha) and S1 (1.54 t/ha) averaged close to 1.5 t/ha (Figure 42).

It is difficult to say how well the short-cycle varieties would perform if they were flowering at the same time as the other rice plants, or how many other factors apart from the rodents have influenced the yield of F1, S1 and S2. S3 has a phenotype and a growth cycle that are much more like the local varieties but exceeded them in average yield.

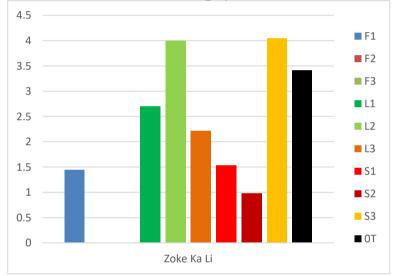


Figure 38 Zokekali - Yield

4.4 Farmer Opinion

4.4.1 Nursery

Two days before transplanting the farmers in both villages were invited to have a look at the nursery and grade the varieties according to their preferences on scale from 1 (worst) to 5 (best). Eleven farmers attended this event in Zokekali (Figure 43), while 14 farmers were present in Boyargyi. As can be seen in Figure 44, F2 and L3 received the highest average "overall" grade of 4.5, shortly followed by F1 (4.36), L1 (4.43) and S1 (4.36) in Boyargyi. The farmers were less content with the performance of F3, compared to the other varieties, giving it an average grade of only 3.79.

In Zokekali, L1 (4.73) had by far the highest average grade, followed by F1 (4.45), L3 (4.45) and S2 (4.45). S1 was the least popular varie-

ty, still reaching an average grade of 4.18 (Figure 45).

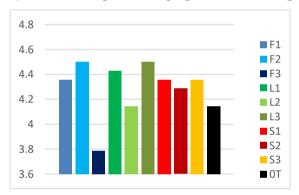
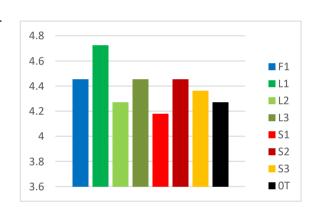
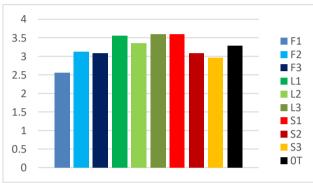
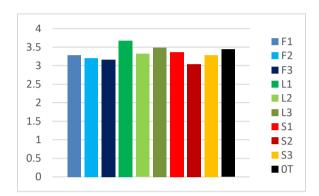


Figure 41 Nursery Overall Impression Grade Average Boyargyi

Figure 39 Farmer Grading of Nursery Plots, Zokekali

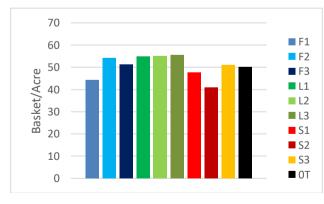




Figure 40 Nursery Overall Impression Grade Average Zokekali

Village	Boya	Boyargyi										Zokekali								Ø	
Variety	F1	F2	F3	L1	L2	L3	S1	S2	S3	0T	Ø	F1	L1	L2	L3	S1	S2	S3	0T	Ø	Ø
Leaf Colour	3.8	3.5	4.4	3.9	4.3	3.0	4.1	3.7	4.0	3.6	3.8	3.5	4.6	3.8	3.4	3.6	4.0	3.4	3.8	3.8	3.8
Plant Height	4.0	3.5	4.4	3.2	4.3	3.1	3.3	3.4	3.9	3.6	3.7	2.3	3.8	3.1	3.1	1.7	1.7	2.2	3.8	2.7	3.3
Root	3.7	3.5	3.1	3.1	4.1	3.0	4.0	4.1	3.9	3.2	3.6	4.5	3.8	3.5	4.5	3.8	3.6	4.1	3.9	4.0	3.7
Density	4.1	3.2	4.0	3.6	4.4	2.9	3.9	3.7	4.1	3.1	3.7	3.4	4.4	3.2	3.4	3.1	3.8	3.6	3.9	3.6	3.7
Over-all	4.4	4.1	4.5	4.4	4.5	3.8	4.4	4.3	4.4	4.1	4.3	4.5	4.7	4.3	4.5	4.2	4.5	4.4	4.3	4.4	4.3

Remarkable values are the very low grades of the newly introduced varieties regarding plant height, especially in Zokekali (Table 21). F1 (2.27), S1 (1.73), S2 (1.73) and S3 (2.18) all received average grades below 2.5 because of their low plant height. The farmers seem to value a certain plant height before transplanting, or they might like the phenotypes they are used to and interpret the short growth of the other varieties as a weakness. Another aspect that was negatively perceived was the low plant density of L2 (3.18) and S1 (3.09) in Zokekali and of OT Pawsanyin (3.07) in Boyargyi. Most varieties showed similar grades in both villages, the most notable difference was S1 that received an average grade of 3.82 in Boyargyi, where the dark leaf colour (4.07) and the good root development (4.00) were valued, while it only averaged a grade of 3.07 in Zokekali due to bad grades in plant height and density (1.73/3.09). The overall grades of all varieties were very similar in both villages, wich sugest that there was no distinct preference regarding the varieties. L3 got low values in Boyargyi, which might be explained by its low emergence numbers, but the farmers also didn't like its properties in

general. Taller seedling generally got higher grades, but it is unclear whether this is primarily due to the farmers preferring taller seedlings or the objective of the grading being unclear. It is very well possible and probable that certain farmers did not entirely understand the purpose of the grading and were either influenced by other farmers or were confused/overwhelmed by the task given. A good example for this is that the overall grade should normaly represent an average of the four other parameters, but it is usually higher than any of them. The farmers didn't have a lot of experience in observing and grading different varieties. Future gradings should be prepared with an extensive introduction in mind and a local person explaining the purpose of these gradings and how the farmers could benefit from these exercises. It could also be helpful to integrate some farmers in the development of questionaires/grading sheets.



4.4.2 Grading and Yield Estimate Before Harvest

Figure 42 Average Grade Plot Number 3

During the grading just before harvest, the farmers compared one of the trial plots to the demonstration plot in Boyargyi. The graded the varieties regarding their personal impression and preferences and estimated their yield. As can be seen in Figures 46 and 47, the average grade for most varieties was higher in the demonstration plot than in the trial. Only L2 (3.32/3.36), L3 (3.48/3.6), S1 (3.36/3.6) and S2 (3.04/3.08) obtained higher average values in the trial plot. No variety got considerably lower grades in the demonstration plot compared to the trial plots. Especially the flooding tolerant varieties seemed to leave a better impression in the demonstration plot. No clear favourite can be nominated on the basis of these figures, and it is unclear how the introduction of certain varieties

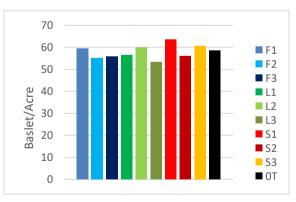


Figure 44 Average Estimated Yield Plot Number 3

Figure 45 Average Estimated Yield Demonstration Plot

and presentations during the farmer field schools might have influenced the farmers opinion or actions. They stated to be interested in F1 Swarna Sub-1 and S2 IR-11T255 but at the same time gave these two varieties very low grades and a low estimated yield. These two varieties were both mentioned during the farmer field school to explain certain mechanisms and differences. The consistent naming of these varieties together with S3 Sinthwelatt has probably influenced the farmers' opinion. Due to language issues it was not always possible for the researcher to completely understand discussions and/or instructions, this makes it difficult to draw conclusions from this data. Regarding the estimated yield, a similar but more pronounced tendency was observed (Figure 48, Figure 49). Only for L3 (53.4/55-6) the farmers expected a lower basket per acre yield in the plot established for the farmer field school than in the trial-fields. The biggest differences in estimated yields were observed in 0T (58.6/50.2), F1 (59.4/44.2), S1 (63.6/47.6), S2 (56/40.8) and S3 (60.6/51). The yields estimated by the farmers were very close to each other, which wasn't the case in the actual harvest. Their estimates ranged from 40 basekts/acre to 55 baskets per acre on the trial fields, while the actual yields were between 10 baskets/acre and 63 baskets/acre. The same tendency can be observed in the estimates of the demonstration plot yields. This suggests that the farmers do not often estimate their yields or are only partly able to do it. Together with the observations in the gradings this could lead to the conclusion that farmers do not actively observe their crops and act according to the state of the fields. Many trial fields were never visited throughout the season, which leaves the impression that farmers ae used to a low risk low reward strategy.

The fact, that the farmers estimated an average yield difference of more than 15 baskets per acre for three varieties when comparing the demonstration plot to the trial plots, shows that all farmers seem to be aware of the improved situation in the demonstration plot. Together with Mr. Tun Zaw Htay, who was also leading the farmer field school, the major differences between the trial and the demonstration plot were evaluated. The three factors soil preparation and leveling, transplanting technique (by hand in the demonstration plot) and water management were identified as the main differences in cultivation practice.

Topic (Total 25 Farm-	Acknowledge	Have	Issues Stated
ers)	Improvement	Issues	
Soil Preaparation and	22	15	Investment (8), Machines (6), Drainage (2), La-
leveling			bour (2)
Transplanting by Hand	15	22	Skilful Labour (13), Amount of Labour (6),
			Deepwater Fields (2)
Water Managment	13	17	Condition of Field (4), No Canal Available (4),
			Financing/Know-How (4), Weather (2), Deep-
			water Fields (2)

Table 20 Farmers Opinion on Changes, Improvements and Issues Regarding Soil Preparation, Transplanting by Hand and Water Managment

As illustrated in Table 20, 22 of the 25 participating farmers acknowledged that they could improve their situation by adapting soil preparation and levelling. Fifteen farmers however stated that they would face difficulties to realize such improvements. The most frequently stated issues where the availability of machines (6) and financial support (8). Fifteen farmers acknowledged the benefits of transplanting by hand, but 22 mentioned constraints regarding the adoption of this change. The most prominent ones are the lack of skilled labour (13) and the lack of labour force in general (6). Slightly more than half of the farmers were seeing the benefits of advanced water management, but 17 of the 25 farmers stated problems regarding drainage and water levels. Unsuitable conditions in the fields (4), the lack of a nearby canal (4) and know how as well as financing (4) seem to be the biggest constraints encountered by the farmers when wanting to adapt water management. When asked about the benefits of shorter-cycle varieties, most farmers stated that an earlier harvest would mean more and/or earlier benefits. Other benefits that have been stated in discussions were the possibility to do extended weed management before broadcasting summer paddy or to have sufficient time to clear the fields before sowing green gram, which is usually sown in mid-November. Of the newly introduced varieties, F1 Swarna-Sub1 (22), S1 Pyimyanmarsein (19) and S3 Sinthwelatt (15) were preferred by the farmers. When asked what they expected or would like to see from the project in the next phase, most people stated support regarding inputs (16), technology (10) or finances (7). When asked about their own changes the most prominent theme was that of good quality seed (4), new varieties (5) and seed-multiplication-plots (7). Other farmers stated that they were interested in changing their practice, but that the continuous support and training by the project was important.

4.4.3 Demonstration Plot

The demonstration plot that was established using the remaining seedlings of the trial nursery was mainly used for teaching purposes during the regularly held farmer field schools. Apart from explanations regarding the trial, exercises to pest, diseases and general crop management were the core activities carried out in this plot. This plot was less affected by rodents than the trial plots (Figure 50). The reasons for this are not entirely clear, but high water levels in the surrounding canal might have stopped the migration of the rodents partly.

Furthermore, the excellent soil preparation, transplanting technique and water management enabled the varieties to realize more of their genetic potential. The data obtained

Figure 46 Demonstration Plot 14 Weeks after Transplanting

from this plot cannot be used for statistical analysis, as there was no repetition, but it can be used to highlight observed tendencies and differences to the trial. The data will be compared to the values observed in the trial plots in Boyargyi.

The average number of panicles per hill was lower in the demonstration plot (6.92) than in the trials (9.97), but the average number of spikelets per flower was higher (140.17 vs 134.73). The average panicle length was also higher (25.82 cm) compared to the trial plots (24.02 cm). The lower average number of panicles per hill can be explained by a higher remaining hill count in the demonstration plot (85.4 vs 63.7); this increases competition between the individual plants and thus reduce the number of tillers per hill. The varieties that showed the biggest differences in hill count compared to the trials are F1 (47 hills->90 hills), F2 (54.6 hills->87 hills), F3 (57.2 hills->89 hills) and S2 (59 hills->93 hills). OT (75 hills->79 hills) and S3 (64 hills->77 hills) showed the smallest difference.

Regarding yield, as you can see in Table 21, there were remarkable differences between the trial plots and the demonstration plot. The yield of all varieties was higher in the demonstration plot, except for L1, where the yield obtained in the demonstration plot equalled average the average of the trial plots. F3 (167%), S1 (250%) and S3 (185%) registered more than 150% higher yields than they averaged in the trial. Also, 0T (62%), F1 (50%), F2 (87%) and L3 (54%) showed an increase of 50% or more. Less significant increases compared to the trial plots were observed in L2 (21 %) and S3 (41 %) but these varieties had the highest yield in the trial. These values are only to be understood as reference points to enable a discussion on the influence of cultivation practices on the yields of the rice varieties in this region. They do not represent significant results. The generally higher yields in the demonstration plot show that beneficial circumstances, like soil preparation, transplanting technique and water management, can help the plants achieve higher yields. Even OT Pawsanyin, that is usually cultivated in both villages, had a substantially higher yield in the demonstration plot. When comparing the yields on volume basis (how rice is usually sold and/or measured in Mon State) the farmer managing the demonstration plot would have harvested 80 % more rice than his peers managing the trial plots. Possibly by only applying certain changes to the cultivation practice. Overall there was an average yield difference of 91 %. As presented in the chapter above some farmers stated constraints regarding the adoption of the changes.

Variety	Yield Trial (basket/acre)	Yield demonstra- tion plot (bas- ket/acre)	Yield trial (t/ha)	Yield demonstra- tion plot (t/ha)	Difference (%) (bas- ket/acre)	Difference (%) (t/ha)
0T	39.9	71.9	2.6	4.2	80	62
F1	23.5	49.8	1.6	2.4	112	50
F2	33.5	48.9	1.5	2.8	46	87
F3	21.7	59.3	1.2	3.2	173	167
L1	34.8	36.3	2.1	2.1	4	0
L2	56.3	64.2	2.9	3.5	14	21
L3	50.4	78.7	2.6	4	56	54
S1	23.6	83.4	1.5	5.25	253	250
S2	12.5	53.0	1.0	2.85	324	185
S3	61.8	87.0	3.4	4.78	41	41

Table 21 Average Yields of the Trial compared to Yields Obtained in the Demonstration Plot

5 Discussion

The conditions in which the farmers cultivate rice in Boyargyi and Zokekali is characterised by very complex combinations of biotic and abiotic stresses. High salt levels in the soil, erratic rainfall, pest and diseases pose challenges to the plants and the farmers. Even though the plots were selected to be as uniform as possible the differences in soil type, nutrients and drainage/water management might have influenced the results. Boyargyi was struck by a heavy flood only two weeks after the trial plots had been transplanted. The flood had visible effects on the rice plants with certain varieties struggling less than others. The local varieties were coping better with the situation than the newly introduced submergence tolerant varieties. Some studies have shown that genotypes expressing the SUB1 gene, as it is the case with F1 Swarna-Sub1, struggle with submergence followed by stagnant flooding as they are inhibited to outgrow the flood. Combining Sub1 with taller traditional varieties or finding a way to enable elongation when partially submerged might alleviate these issues and make Sub-1 varieties more interesting for areas that regularly face stagnant flooding (Jackson and Ismail 2015, Sarkar et al. 2009, Setter and Laurels 1996). As this was the case in Boyargyi, it can explain some of the low yields observed in F1 Swarna-Sub1 particularly At the time of the research it is not clear whether F3 IR 84649 also has the Sub-1 QTL activated, this might partly explain the low yield obtained for this variety. Some newly developed varieties that combine tolerance to submergence and salinity might also be better suited for the conditions in the two villages (Tamang and Fukao 2015).

Figure 48 Plot Number 1, One Week After Flood, Boyargyi

Figure 47 Plot Number 1, Four Weeks After Flood, Boyargyi

Figure 52 Plot Number 1, Two Weeks After Flood, Boyargyi

Figure 54 Plot Number 1, Eight Weeks After Flood, Boyargyi

In Zokekali the short-cycle varieties flowered before any other fields started flowering. This attracted rodents that caused serious damage to the plants. It is unclear how much these damages can be reduced by seeding later, in order to align the flowering with the local varieties, or by having bigger fields, where the impact of the rodents is less devastating. It is also not possible to assess whether the short growth habit of these varieties further worsened the situation. The damages by rodents delayed the short-cycle varieties and forced them to re-establish tillers and panicles, which resulted in smaller flowers with less spikelets. This reduced grain production and high numbers of dead plants

seem to be the main reasons for the low yields of F1 Swarna-Sub1, F3 IR-84649, S1 Pyimyanmarsein and S2 IR-11T255. F2 Mekyut and S3 Sinthwelatt were less or not affected by these rodent damages, as they have longer growth cycles than the previously mentioned varieties.

Figure 49 Snail in Zokekali

The varieties possibly suffered from nutrient deficiencies as the cultivation approach practiced by the farmers in Boyargyi an Zokekali is very extensive. The amounts of fertilizer, especially of nitrogen, applied might limit the productivity of certain varieties. Very little, if any at all, weeding is done and the land preparation/levelling is very basic. When the trial plots were transplanted in Boyarqui, very little other rice fields had allready been transplanted, which means that the pressure from snails was probably higher than it was to be expected (Figure 55). Towards the end of the cropping season, some damages by ruminants

grazing in the fields were also observed (Figure 56).

The local varieties seemed to generally cope better with

these conditions. The variety that performed best throughout both villages was S3 Sinthwelatt. It was the only newly introduced variety that was able to compete with the traditional varieties (OT Pawsanyin, L1 Baygyar, L2 Kyarpyan, L3 Taungpyan) and even outperform them. Some farmers have expressed that they are not entirely satisfied by the eating properties of S3 Sinthwelatt, which might be a constraint for adoption of this variety (Htay 2017). S3 and the local varieties were very consistent throughout all collected parameters. S3 Sinthwelatt had good values regarding the

Figure 50 Damage by Ruminants in Boyargyi

panicle length and the number of spikelets, which is where it outperformed the local varieties. The consistency and stability of the local varieties is what makes them optimal for the region and explains why the farmers are still cultivating these varieties. Under the current conditions and with the current practice of leaving the plants on the field until harcest it makes sense to use a variety that copes well with a low risk low reward strategy. S3 Sinthwelatt might be even better for this situation, but issues regarding its eating properties have to be clarified before promoting this variety on a larger scale.

The demonstration plot that was established in Boyargyi showed that under beneficial circumstances the new varieties can express more of their potential. The farmer that was taking care of the demonstration plot had been working with the project for some time and was known to have exemplary management. Furthermore, this field was located close to his home, which made regular observations more convenient. No variety performed worse in the demonstration plot compared to their averages in the trial. 250% more yield was observed in S1 IR-11T255, which was the highest yield. OT

Pawsanyin, which should be well adapted to the conditions in the field, showed a yield improvement Figure 51 Grading of Demonstration Plots with Farmers by more than 60%. The plants averaged close to from Different Villages double the yield. Most of this improvement can be

attributed to a thorough soil preparation with decent levelling, transplanting by hand and water management through drainage. The farmers participating in the farmer field schools and gradings seemed interested by the benefits of an improved cultural practices (Figure 57).

The data collected during this trial is not detailed enough to draw precise conclusions regarding the influence of cultivation practices on the yield of varieties. The farmers seemed interested by the results they observed in the demonstration plot and were mostly keen on adapting new techniques and technologies. However, the current situation regarding infrastructure, work and markets in Mon State poses some constraints to the adoption of new cultivation practices. The main factors limiting change are mechanisation for soil preparation, labour for transplanting, and a functioning close-by canal or drainage system for water management.

6 Conclusions

The salt tolerant variety S3 Sinthwelatt shows potential to improve the yields in Boyargyi and Zokekali. The variety was able to cope well with an environment majorly affected by salinity, as was the case in Zokekali, and one affected by flooding. Issues regarding its eating properties must be considered when promoting its adoption. Some of the other newly introduced varieties showed potential in a demonstration plot with improved cultivation practice, but will not be able to improve the situation in the two villages without adaptions in crop management. The local varieties seem to be generally better adapted to the prevailing conditions in the fields.

Further research is necessary to determine the major issues and limitations in the agricultural system. Trials researching different cultivation intensities and systems could allow for more precise conclusions and recommendations regarding soil preparation, transplanting and water management.

The farmers seem interested in new varieties and practices and are keen on continuing the cooperation with the project. The extension provided by the project is appreciated. It is important to consider whether the additional investments, be it money or labour, can be compensated by the increase in yield.

7 References

Akinwale MG, Akinyele B O, Odiyi A C, Osekita O S, Gregorio G, 2015. Inheritance of Submergence Tolerance in Lowland Rice Varieties. Donnish Journal of Agricultural Research, 2 (9), P. 77-80.

Denning G, Baroang K, Sandar T M, 2013. Background Paper No.2 Rice Productivity Improvement in Myanmar. United States Agency for international Development (USAID) Burma, Yangon, 34 P.

Fukao T, Yeung E, Bailey-Serres J, 2011. The Submergence Tolerance Regulator SUB+A Mediates Crosstalk between Submergence and Drought Tolerance in Rice. The Plant Cell, 23 (1), P. 412-427.

Gregorio F B, Islam M R, Vergara G V, Thirumeni S, 2013. Recent Advances in Rice Science to Design Salinity and other Abiotic Stress Tolerant Rice Varieties. SABRAO Journal of Breeding and Genetics, 45 (1), 31-41.

Helvetas Swiss Intercooperation (HSI) Myanmar, 2015. Project Document for Main Pahse15-September 2015 to April 2018. Helvetas Swiss Intercooperation (HSI) Myanmar, Yangon, 108 P.

Hom N H; Htwe N M, Hein Y, Than S M, Kywe M, Htut T, 2015. Myanmar Climate-Smart Agriculture Strategy. Ministry of Agriculture and Irrigation, Nyapyidaw, 44 P.

Horie T, Karahara I, Katsuhara M, 2012. Salinity Tolerance Mechanisms in Glycophytes: An Overview with the Central Focus on Rice Plants. Rice, 5 (1), P. 11-28.

Htay T Z, 2017. Livelihood Officer CLCMGoMP, personal supervisor and local expert

International Rice Research Institute (IRRI), 1986. Progress in Rainfed Lowland Rice. Retrieved on 30.1.2018,

International Rice Research Institute (IRRI), 2014. Wild Parent Spawns Super Salt-tolerant Rice. 4.15.2013, retrieved on 7.8.2017, <u>http://ricetoday.irri.org/wild-parent-spawns-super-salt-tolerant-rice</u>

International Rice Research Institute (IRRI), 2015. A Sucessful Salt-tolerant Rice Variety in Sreefalkathi Village. 8.6.2015, retrieved the 7.8.2017, <u>http://strasa.irri.org/news-and-events/salt-tolerantricevarietysuccessstoryofsreefalkathivillage</u>

International Rice Research Institute (IRRI), 2016a. Myanmar All Set to Adopt Climate-Smart Strategies in Agriculture. 4.1.2016, retrieved the 8.7.2017, <u>http://ricetoday.irri.org/myanmar-ready-to-adopt-climate-smart-strategies-in-agriculture</u>

International Rice Research Institute (IRRI), 2016b. Myanmar Partners Produce High-Yielding Salinity-Tolerant Rice Varieties. 6.8.2016, retrieved the 8.7.2017, <u>http://ricetoday.irri.org/myanmar-partners-produce-high-yielding-salinity-toleran-rice-varieties</u>

IUCN, 2017. Conserving wetlands in Myanmar: Gulf of Mottama is Myanmar's fourth Ramsar site. International Union for Conservation of Nature, 16.5.2017, retrieved the 30.1.2018, <u>https://www.iucn.org/news/myanmar/201705/conserving-wetlands-myanmar-gulf-mottama-</u> <u>myanmar%E2%80%99s-fourth-ramsar-site</u>

Islam M R, Gregorio G B, 2013. Progress of Salinity Tolerant Rice Variety Development in Bangladesh. SABRAO Journal of Breeding and Genetics, 45 (1), P. 21-30.

Jackson M B, Ismail A M, 2015. Introduction to the Special Issue: Electrons, Water and Rice Fields: Plant Response and Adaption to Flooding and Submergence Stress. AoB Plants, 7, P. 78-88.

Kato Y, Collard B C Y, Septiningsih E M, Ismail A M, 2014. Physiological Analyses of Traits Associated with Tolerance of Long-Term Partial Submergence in Rice. AoB Plants, 6, P. 58-68.

Kawano N, Ito O, Sakagami J I, 2008. Morphological and Physiological Response of Rice Seedlings to Complete Submergence (Flash Flooding). Annals of Botany, 103 (2), P. 161-169.

McKinley J, Adaro C, Pede V, Setiyono T, Aung N M, Htwe N M, Nyo M H, Tha S M, Hom N H, Swe K L, 2015. The Current State of Climate Change Perceptions and Policies in Myanmar: 2014 Report. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen, 30 P.

Munns R, Tester M, 2008. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59 (1), P. 651-681.

Naing T A A, Kingsbury A J, Buerkert Am Finckh M R, 2008. A Survey of Myanmar Rice Production and Contraints. Journal of Agriculture and Riral Development in the Tropics and Subtropics (JARTS), 109 (2), P. 151-168.

Paris T R, Manzanilla D, Tatlonghari G, Labios R, Cueno A, Villanueva D, 2011. Guide to Participatory Varietal Selection for Submergence-Tolerant Rice. International Rice Research Institute (IRRI), Los Baños, 120 P.

Platten J D, Egdane J A, Ismail A M, 2013. Salinity Tolerance, Na+ Exclusion and Allele mining of HKT1; 5 in Oryza sativa and O. glaberrima: Many Sources, many Genes, one Mechanism? BMC Plant Biology, 13 (1), 32-48.

Plett D, Safwat G, Gilliham M, Skrumsager-Moller I, Roy S, Shirley N, Jacobs A, Johnson A, Teste M, Rahman A, 2010. Improved Salinity Tolerance of Rice Through Cell Type-Specific Expression of AtHKT1;1. Retrieved the 6.8.2017, <u>http://dx.plos.org/10.1371/journal.pone.0012571</u>

Rad H E, Aref F, Khaledian M, Rezaei M, Amiri E, Falakdehy O Y, 2011. The Effects of Salinity at Different Growth Stages on Rice Yield. International Congress on Irrigation and Drainage, Teheran, 12 P.

Rahman M A, Thant A A, Win M, Tun M S, Moet P, Thu A M, Win K T, Myint T, Myint O, Tuntun Y, Labios R V, Casimero M C, Gregorio G B, Johnson D E, Singleton G R, Singh R K, 2015. Participatory Varietal Selection (PVS): A "Bottom-Up" Approach Helps Rice Farmers in the Ayeyarwady Delta, Myanmar. SABRAO Journal of Breeding and Genetics, 57 (3), P. 299-314.

Ray P K S, Islam M A, 2008. Genetic Analysis of Salinity Tolerance in Rice. Bangladesh Journal of Agricultural Research, 33(4), P. 519-529.

Sarkar R K, Panda D, Reddy J N, Patnaik S S C, Mackill D J, Ismail A M, 2009. Performance of Submergence Tolerant Rice (Oryza sativa) Genotypes Carrying the Sub1 Quantitative Trait Locus Under Stressed and Non-Stressed Natural Field Conditions. Indian Journal of Agricultural Sciences, 79(11), P. 876-883.

Setter T L, Laureles E V, 1996. The Beneficial Effect of Reduced Elongation Growth on Submergence Tolerance of Rice. Journal of Experimental Botany, 47 (10), P. 1551-1559.

Singh R K, Redoña E, Gregorio F B, Salam M A, Islam M R, Singh D P, Sen P, Saha S, Mahata K R, Sharma S G, Pandey M P, Sajise A G, Mendoza R D, Toledo M C, Dante A, Ismail A M, Paris T R, Haefele S M, Thomson M J, Zolvinski S, Singh Y P, Nayak A K, Sing R B, Mishara V K, Sharma D K, Gautam R K, Ram P C, Singh P N, Verma O P, Singh A, Lang NT, 2010. The Right Rice in the Right Place: Systematic Exchange and Farmer-based Evaluation of Rice Germplasm for Salt-affected Areas. In: Hoanh C T, Szuster B W, Suan-Pheng K, Ismail A M, Noble A D (eds.) Tropical Deltas and Coastal Zones – Food Production, Communities and Environment at the Land-Water Interface. CAB International, Oxfordshire, P. 166-182. Singh U S, Dar M H, Singh S, Zaidi N W, Bari M A, Mackill D J, Collard B C Y, Singh VN, Singh J P, Reddy J N, Singh R K, Ismail A M, 2013. Field Performance, Dissemination, Impact and Tracking of Submergence Tolerant (Sub1) Rice Varieties in South Asia. SABRO Journal of Breeding and Genetics, 45 (1), P. 112-131.

Stads G J, Kam P S, 2007. Myanmar, Agricultural Science and Technology Indicators (ASTI) Country Brief. Consultative Group on International Agricultural Research (CGIAR), retrieved the 8.7.2017, https://www.asti.cgiar.org/pdf/myanmar_CB38.pdf

Tamang B, Fukao T, 2015. Plant Adaptation to Multiple Stresses during Submergence and Following Desubmergence. International Journal of Molecular Sciences, 16 (12), P. 30164-30180.

Thi-Lang N, Thanh N C, Buu, B C, Ismail A, Thi-Be-Tu P, 2009. Genetic Diversity of Salt Tolerance Landraces in Vietnam. Journal of Plant Breeding and Crop Science, 1 (5), P. 230-243.

Thomson M J, Ocampo M, Egdane J, Rahman MA, Sajise A G, Adorada D L, Tumimbang-Raiz E, Blumwald E, Seraj Z I, Singh R K, Gregorio G B, Ismail A M, 2010. Characterizing the Saltol Quantitative Trait Locus for Salinity Tolerance in Rice. Rice, 3 (2-3), P. 148-160.

Watling K, 2007. Measuring Salinity. Queensland Government Natural Resources and Water, Queensland, 2 P.

Wattana P, Maysaya T, 2008. Effect of Salinity Stress on Growth and Carbohydrate Metabolism in three Rice (Oryza staiva L.) cultivars differing in salinity tolerance. Indian Journal of Experimental Biology, 46, P. 736-742.

Wongton P, True J, 2015a. Non-Fishery Value Chain Study Report (CLCMGoMP). Helvetas Swiss Intercooperation (HSI) Myanmar, Yangon, 60 P.

Wongton P, True J, 2015b. Updated Situation Analysis of the Gulf of Mottama. Swiss Agency for Development and Cooperation, Bern, 35 P.

Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z, Yang H, 2014. Overexpression of OsMYB48-1, a Novel MYB-Related Transcription Factor, Enhances Drought and Salinity Tolerance in Rice. PloS ONE, retrieved the 6.8.2017, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092913

YI M M, Tun A, Mar A A, Yee K, Singleton G R, 2010. Dissemination Integrated Natural Resource Management for Lowland Rice in Myanmar. In: Palis F G, Singleton G R, Casimero M C, Hardy B (eds.). Research to Impact: Case Studies for Natural Resource Managment For Irrigated Rice in Asia. International Rice Research Institute, Los Baños, P. 67-80.

Yoshida S, 1981. Fundamentals of Rice Crop Science. International Rice Research Institute, Los Baños, 279 P.

Zhang Y, Wang Z, Li L, Zhou Q, Xiao Y, Wei X, Zhou M, 2015. Short-term Complete Submergence of Rice at the Tillering Stage Increases Yield. PloS ONE, retrieved the 6.8.2017, <u>http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127982</u>

Acknowledgements

First and foremost, I want to thank HAFL and Helvetas for the possibility to work in the CLCMGoMP and conduct this research. Special thanks go out to: Peter Schmidt, Jos van der Zanden, Than Htike Aung and Tun Zaw Htay for supervising me in Myanmar during this time; to Win Htun, Saw Pho Sa, Zin Htoo Nai, A Linn Yaung and Kyaw Zin Win for helping me with the data collection; and to Alessandra Giuliani and Christoph Studer for supporting me from Yangon and Bern respectively.

Benjamin Pablo Jungblut

Appendix

Table of Contents

Results Statistical Analysis Nursery	3
Emergence	
Boyargyi:	
Zokekali:14	
Plant Height Nursery	
Boyargyi:	
Zokekali:	
Results Statistical Analysis Trials	34
Plant Height	
Boyargyi	
Zokekali:	
Tillers:	
Boyargyi:	
Zokekali:	
Leaf Colour:	
Boyargyi:72	
Zokekali:	
Statistical Analysis Harvest	95
Nr. Hills:97	
Boyargyi	
Zokekali:	
Plant Height	
Boyargyi	
Zokekali	
Nr. Tillers101	
Boyargyi101	
Zokekali	
Nr. Panicles (WP)103	
Boyargyi103	
Zokekali	
Nr Panicles (SP)	
Boyargyi	
Zokekali	
Panicle per Tiller	
Boyargyi107	
Zokekali	
Panicle Length	
Boyargyi	
Zokekali	
Nr. Spikelets (WP)	
Boyargyi	
Zokekali	
Nr. Spikelets (SP)	
Boyargyi	
Zokekali	
Yield Basket/acre (WP)	
Boyargyi	
Zokekali	

Yield Basket/acre (SP)	
Boyargyi	
Zokekali	
Yield t/ha (WP)	
Boyargyi	
Zokekali	
Yield t/ha (SP)	121
Boyargyi	
Zokekali	122

Results Statistical Analysis Nursery

Emergence

Boyargyi: Summary:		
Date/Days after seeding	ANOVA significant (10 fac- tors)	Significant diferences
1/4	Yes (F _{9,40} =8.12, p<0.01)	F3, L2<0T,F1, L1, S3
2/7	Yes (F _{9,40} =7.49, p<0.01)	F3<0T, F1, L1, S3 L2<0T, F1
3/9	Yes (F _{9,40} = 7.50, p<0.01)	F3<0T, L1, S3 L2<0T
4/11	Yes (F _{9,40} =6.08, p<0.01)	F3<0T, F1 L2<0T
5/14	Yes (F _{9,40} =6.60, p<0.01)	F3, L2<0T, F1
6/16	Yes (F _{9,40} =6.67, p<0.01)	F3<0T, F1 L2<0T
7/18	Yes (F _{9,40} =6.46, p<0.01)	F3<0T, F1 L2<0T
8/21	Yes (F _{9,40} =6.68, p<0.01)	F3, L2<0T, F1
9/23	Yes (F _{9,40} =7.65, p<0.01)	F3< 0T, F1, L1 L2< 0T, F1
10/25	Yes (F _{9,40} =7.18, p<0.01)	F3, L2<0T, F1

Date 1:

distances of		Anal	ysis of Variance	Report
Page/Date/Time	1 06.10.2017	11:13:39		
Database	Z:\Users\Benja	min\Documents	n\NCSS\Eme	ergence-Boyargyi.S0
Response	Emergence_Ra			
Tests of Assump	tions Section			
a series and a series		Test	Prob	Decision
				(0.05)

Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	-0.5272	0.598064	Accept
Kurtosis Normality of Residuals	-0.0907	0.927695	Accept
Omnibus Normality of Residuals	0.2862	0.866684	Accept
Modified-Levene Equal-Variance Test	1.7617	0.106651	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05
A: Variety	9	31781.35	3531.261	8.12	0.000001*	0.999991
S(A)	40	17403.69	435.0923			
Total (Adjusted)	49	49185.04				
Total	50					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_1 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=435.0923 Critical Value=4.3722

			Different From
Group	Count	Mean	Groups
Flodding 3 IR-84649	.1295.30		
	5	5.876777	Local 1 Baygyar, Salt 3 Sinthwelatt Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Local 2 Kyarpyan	5	9.523809	Salt 3 Sinthwelatt Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Flodding 2 Mekyut	5	35.59472	
Local 3 Taungpyan	5	54.85437	
Salt 2 IR-11T225	5	55.29914	
Salt 1 Pyimyanmarse	ein		
	5	58.27715	
Local 1 Baygyar Salt 3 Sinthwelatt	5	67.09677	Flodding 3 IR-84649.1295.30
	5	69.14286	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan
Flodding 1 Swarna S	ub-1		
	5	70.33708	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan
Zero Treatment Paw	sanyin		
	5	87.26495	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan

Notes:

Date 2:

		1.0. e	Ana	ysis of Variance	e Report	
Page/Date/Time	1 06	5.10.2017 1	1:15:13			
Database	Z:\Users\Benjamin\Documents\ n\NCSS\Emergence-Boyarg					
Response	Emergence_Rate_Date_2					
Tests of Assump	tions S	ection	Test	Broh	Desision	

	lest	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	0.2461	0.805639	Accept
Kurtosis Normality of Residuals	-0.1282	0.897960	Accept
Omnibus Normality of Residuals	0.0770	0.962237	Accept
Modified-Levene Equal-Variance Test	2.0109	0.063445	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	36477.59	4053.065	7.49	0.000003*	0.999968
S(A)	40	21632.25	540.8062			
Total (Adjusted)	49	58109.84				
Total	50					

Local States

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_2 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=540.8062 Critical Value=4.3722

100 B		10.75	Different From
Group	Count	Mean	Groups
Flodding 3 IR-84649.	1295.30		
	5	6.729858	Salt 3 Sinthwelatt, Local 1 Baygyar Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Local 2 Kyarpyan	5	13.2381	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Flodding 2 Mekyut Salt 1 Pyimyanmarse	5 in	40.17621	
	5	60.52435	
Local 3 Taungpyan	5	62.03883	
Salt 2 IR-11T225 Salt 3 Sinthwelatt	5	68.03419	
	5	72.85714	Flodding 3 IR-84649.1295.30
Local 1 Baygyar	5	74.59677	Flodding 3 IR-84649.1295.30
Flodding 1 Swarna Si			initia -
riodding i ghana o	5	79.32584	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan
Zero Treatment Paws	anyin		
	5	93.76068	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan

Notes:

Date 3:

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	0.5159	0.605908	Accept
Kurtosis Normality of Residuals	0.7902	0.429410	Accept
Omnibus Normality of Residuals	0.8906	0.640634	Accept
Modified-Levene Equal-Variance Test	1.5802	0.154480	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	32101.49	3566.833	7.50	0.000002*	0.999969
S(A)	40	19021.77	475.5443			
Total (Adjusted)	49	51123.27				
Total	50					

* Term significant at alpha = 0.05

-

Scheffe's Multiple-Comparison Test

44

......

- i i i i

Response: Emergence_Rate_Date_3 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=475.5443 Critical Value=4.3722

Group Flodding 3 IR-84649.1295.30	Count 5	Mean 7.014218	Different From Groups Salt 3 Sinthwelatt, Local 1 Baygyar
Trouging 5 11-04045.1250.50		7.014210	Zero Treatment Pawsanyin
Local 2 Kyarpyan	5	16.85714	Zero Treatment Pawsanyin
Flodding 2 Mekyut	5	38.59031	
Salt 1 Pyimyanmarsein	5	46.14232	
Salt 2 IR-11T225	5	63.50427	
Flodding 1 Swarna Sub-1	5	65.01873	
Local 3 Taungpyan	5	66.79612	
Salt 3 Sinthwelatt	5	71.71429	Flodding 3 IR-84649.1295.30
Local 1 Baygyar	5	76.20968	Flodding 3 IR-84649.1295.30
Zero Treatment Pawsanyin	5	90.76923	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan

Notes:

Date 4:

	Analysis of Variance Report
Page/Date/Time	1 06.10.2017 11:17:44
Database	Z:\Users\Benjamin\Documents\ n\NCSS\Emergence-Boyargyi.S0
Response	Emergence_Rate_Date_4

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	-0.1461	0.883858	Accept
Kurtosis Normality of Residuals	0.2009	0.840798	Accept
Omnibus Normality of Residuals	0.0617	0.969626	Accept
Modified-Levene Equal-Variance Test	1.6643	0.130264	Accept

Box Plot Section

Analysis of Variance Table

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	30238.02	3359.78	6.08	0.000024*	0.999537
S(A)	40	22117.83	552.9457			
Total (Adjusted)	49	52355.84				
Total	50					
* Torm cignificant at	alpha - 0	05				

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_4 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=552.9457 Critical Value=4.3722

			Different From
Group	Count	Mean	Groups
Flodding 3 IR-84649.	1295.30		
	5	5.781991	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Local 2 Kyarpyan	5	14.66667	Zero Treatment Pawsanyin
Flodding 2 Mekyut	5 5	41.14537	
Salt 1 Pyimyanmarse			
	5	56.10487	
Salt 2 IR-11T225	5	59.23077	
Local 3 Taungpyan Salt 3 Sinthwelatt	5	64.56311	
	5	68.19048	
Local 1 Baygyar	5	69.91936	
Flodding 1 Swarna St	ub-1		
	5	79.10112	Flodding 3 IR-84649.1295.30
Zero Treatment Paws	anyin		
	5	81.96581	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan

Notes:

Date 5:

	Analysis of variance Report
Page/Date/Time	1 06.10.2017 11:18:49
Database	Z:\Users\Benjamin\Documents\ n\NCSS\Emergence-Boyargyi.S0
Response	Emergence_Rate_Date_5
Tests of Assump	tions Section

Analysis of Variance Depart

Assumption	Test Value	Prob Level	Decision (0.05)
Skewness Normality of Residuals	0.2789	0.780343	Accept
Kurtosis Normality of Residuals	0.4072	0.683878	Accept
Omnibus Normality of Residuals	0.2436	0.885342	Accept
Modified-Levene Equal-Variance Test	1.7539	0.108394	Accept

Box Plot Section

Analysis of Variance Table	
Source	

	Sum of	Mean		Prob	Power
DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
9	35674.23	3963.803	6.60	0.000010*	0.999824
40	24021.97	600.5492			
49	59696.19				
50					
	9 40 49	DFSquares935674.234024021.974959696.19	DFSquaresSquare935674.233963.8034024021.97600.54924959696.19	DFSquaresSquareF-Ratio935674.233963.8036.604024021.97600.54924959696.19	DF Squares Square F-Ratio Level 9 35674.23 3963.803 6.60 0.000010* 40 24021.97 600.5492 49 59696.19

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_5 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=600.5492 Critical Value=4.3722

Count	Mean	Different From Groups
5	6.635071	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
5	14.57143	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
5 n	42.73128	
5	60.74907	
5	67.80952	
	68.03419	
	69.32039	
5	71.45161	
b-1		
5	82.69663	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan
anyin		
5	93.4188	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	295.30 5 6.635071 5 14.57143 5 42.73128 5 60.74907 5 67.80952 5 68.03419 5 69.32039 5 71.45161 1b-1 5 82.69663 anyin

Notes:

Date 6:

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	0.3281	0.742807	Accept
Kurtosis Normality of Residuals	0.2594	0.795349	Accept
Omnibus Normality of Residuals	0.1749	0.916242	Accept
Modified-Levene Equal-Variance Test	1.6865	0.124490	Accept

Box Plot Section

Analysis of Varian Source	ce Table	Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	40087.48	4454.165	6.67	0.000009*	0.999845
S(A)	40	26725.43	668.1357			
Total (Adjusted)	49	66812.91				
Total	50					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_6 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=668.1357 Critical Value=4.3722

Group	Count	Mean	Different From Groups
Flodding 3 IR-84649.1295.30	5	6.919431	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Local 2 Kyarpyan	5	15.42857	Zero Treatment Pawsanyin
Flodding 2 Mekyut	5	43.70044	
Salt 1 Pyimyanmarsein	5	61.27341	
Salt 2 IR-11T225	5	68.20513	
Salt 3 Sinthwelatt	5	70.66666	
Local 3 Taungpyan	5	73.20388	
Local 1 Baygyar	5	75.72581	
Flodding 1 Swarna Sub-1	5	83.37079	Flodding 3 IR-84649.1295.30
Zero Treatment Pawsanyin	5	102.3932	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan

			A	nalysis of V	ariance Rep	port		
Page/Date/Time	1 06.10	.2017 11:						
Database	Z:\Users\	Benjamin	\Docume	ents\ n\NC	SS\Emerger	nce-Boyargyi.S	0	
Response	Emergen							
Tests of Assump	tions Section	on						
			Test	Pro	b	Decision		
Assumption			Value	Lev	/el	(0.05)		
Skewness Normality of Residuals			-0.1161	0.9	07574	Accept		
Kurtosis Normality of Residuals			0.1896	0.1896 0.849648		Accept		
Omnibus Normalit	y of Residua	als	0.0494	0.9	75595	Accept		
Modified-Levene E	Equal-Varian	ice Test	1.6476	0.1	34759	Accept		
Box Plot Section								
Analysis of Varia	nce Table							
Source		Sum o	of	Mean		Prob	Power	
Term	DF	Squar	es	Square	F-Ratio	Level	(Alpha=0.05)	
A: Variety	9	36200	.47	4022.275	6.46	0.000013*	0.999770	
S(A)	40	24916	.39	622.9097				
	49	61116.	86					
Total (Adjusted)								

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_7 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=622.9097 Critical Value=4.3722

			Different From
Group	Count	Mean	Groups
Flodding 3 IR-84649.1	1295.30		
	5	6.445498	Flodding 1 Swarna Sub-1
The second states of the second second	12	10.110.11	Zero Treatment Pawsanyin
Local 2 Kyarpyan	5	15.52381	Zero Treatment Pawsanyin
Flodding 2 Mekyut	5	43.43612	
Salt 1 Pyimyanmarsei	in 🛛		
	5	54.60674	
Salt 2 IR-11T225	5	65.21368	
Salt 3 Sinthwelatt			
	5	67.2381	
Local 3 Taungpyan	5	72.52427	
Local 1 Baygyar	5	73.30645	
Flodding 1 Swarna Su	ub-1		
	5	81.04869	Flodding 3 IR-84649.1295.30
Zero Treatment Paws	anyin		
	5	95.9829	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan

Notes:

Date 8:

Analysis of Variance Report
1 06.10.2017 11:22:18
Z:\Users\Benjamin\Documents\ n\NCSS\Emergence-Boyargvi.S0
Emergence_Rate_Date_8

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	-0.0527	0.957934	Accept
Kurtosis Normality of Residuals	-0.0776	0.938140	Accept
Omnibus Normality of Residuals	0.0088	0.995607	Accept
Modified-Levene Equal-Variance Test	1.6245	0.141236	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	37023.8	4113.755	6.68	0.000009*	0.999848
S(A)	40	24637.44	615.9359			
Total (Adjusted)	49	61661.23				
Total	50					

.....

Means and Effects Section

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_8 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=615.9359 Critical Value=4.3722

			Different From
Group	Count	Mean	Groups
Flodding 3 IR-84649.1	1295.30		
	5	14.69194	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Local 2 Kyarpyan	5	16.19048	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Flodding 2 Mekyut Salt 3 Sinthwelatt	5	50.39648	
	5	65.71429	
Salt 1 Pyimyanmarsei	n		
	5	66.21723	
Salt 2 IR-11T225	5	67.52137	
Local 3 Taungpyan	5	73.59223	
Local 1 Baygyar	5	77.25806	
Flodding 1 Swarna Su	ub-1		
	5	92.28465	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan
Zero Treatment Paws	anyin		
	5	101.8803	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan

Notes:

Date 9:

	Analysis of Variance Report
Page/Date/Time	1 06.10.2017 11:23:22
Database	Z:\Users\Benjamin\Documents\ n\NCSS\Emergence-Boyargyi.S0
Response	Emergence_Rate_Date_9
Tests of Assump	tions Section

.

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	0.4252	0.670686	Accept
Kurtosis Normality of Residuals	0.7954	0.426368	Accept
Omnibus Normality of Residuals	0.8135	0.665812	Accept
Modified-Levene Equal-Variance Test	1.5008	0.181068	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	31517.15	3501.905	7.63	0.000002*	0.999976
S(A)	40	18350.53	458.7633			
Total (Adjusted)	49	49867.68				
Total	50					

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_9 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=458.7633 Critical Value=4.3722

		Different From
Count	Mean	Groups
295.30		
5	11.94313	Local 1 Baygyar, Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
5	15.80952	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
5	50.39648	
5	60.66667	
n		
5	67.26591	
5	67.52137	
5	70.97087	
5	72.66129	Flodding 3 IR-84649.1295.30
b-1		
5	83.97004	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan
anyin		
5	91.45299	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan
	295.30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	295.30 11.94313 5 15.80952 5 50.39648 5 60.66667 5 67.26591 5 67.52137 5 70.97087 5 72.66129 b-1 5 5 83.97004

Notes:

Date 10:

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	-0.0594	0.952672	Accept
Kurtosis Normality of Residuals	0.0784	0.937486	Accept
Omnibus Normality of Residuals	0.0097	0.995175	Accept
Modified-Levene Equal-Variance Test	1.3830	0.228144	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	26807.59	2978.621	7.18	0.000004*	0.999942
S(A)	40	16593.13	414.8282			
Total (Adjusted)	49	43400.72				
Total	50					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_10 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=414.8282 Critical Value=4.3722

			Different	From
Group	Count	Mean	Groups	
Flodding 3 IR-8464	9.1295.30			
		5	12.60664	Flodding 1 Swarna Sub-1 Zero Treatment Pawsanyin
Local 2 Kyarpyan		5	14.66667	Flodding 1 Swarna Sub-1
		-	10 05554	Zero Treatment Pawsanyin
Flodding 2 Mekyut		5	46.25551	
Salt 3 Sinthwelatt		-		
		5	57.80952	
Salt 1 Pyimyanmar	sein	1.1	12 10 10	
		5	63.07116	
Local 1 Baygyar		5	65.48387	
Salt 2 IR-11T255		5	65.89744	
Local 3 Taungpyan	11	5	67.57281	
Flodding 1 Swarna	Sub-1	5	76.32959	Flodding 3 IR-84649.1295.30
				Local 2 Kyarpyan
Zero Treatment Pa	wsanyin	5	85.81197	Flodding 3 IR-84649.1295.30 Local 2 Kyarpyan

Notes:

Zokekali: Summary		
Date/Days after seeding	ANOVA significant (10 factors)	Significant diferences
1/4	Yes (F _{9.40} =14.04, p<0.01)	F2, F3, L2 <l1, l3,="" s1,="" s3<="" td=""></l1,>
2/7	Yes (F _{9.40} =15.35, p<0.01)	F2, F3, L2 <f1, l1,="" l3,="" s1,="" s2,="" s3<="" td=""></f1,>
3/9	Yes (F _{9,40} = 15.98, p<0.01)	F2, F3 <l1, l3,="" s1,="" s2,="" s3<br="">L2<l1, l3<="" td=""></l1,></l1,>
4/11	Yes (F _{9,40} =14.93, p<0.01)	F2, F3 <l1, l3,="" s1,="" s2,="" s3<br="">L2<l1, l3<="" td=""></l1,></l1,>
5/14	Yes (F _{9,40} =13.57, p<0.01)	F2, F3 <l1, l3,="" s1,="" s2,="" s3<br="">L2<l1, l3<="" td=""></l1,></l1,>
6/16	Yes (F _{9,40} =12.05, p<0.01)	F3 <l1, l3,="" s1,="" s2,="" s3<br="">F2< L1, L3, S1, S3 L2<l1, l3<="" td=""></l1,></l1,>
7/18	Yes (F _{9,40} =32.01, p<0.01)	F3<0T, F1, L1, L2, L3, S1, S2, S3 F2<0T, F1, L1, L3, S1, S2, S3 L2 <l3, s3<="" td=""></l3,>
8/21	Yes (F _{9,40} =34.48, p<0.01)	F3<0T, F1, L1, L2, L3, S1, S2, S3 F2<0T, F1, L1, L3, S1, S2, S3 L2 <l1, l3,="" s3<="" td=""></l1,>
9/23	Yes (F _{9,40} =36.67, p<0.01)	F3, F2<0T, F1, L1, L2, L3, S1, S2, S3 L2 <l1, l3,="" s3<="" td=""></l1,>
10/25	Yes (F _{9,40} =7.18, p<0.01)	F3, F2<0T, F1, L1, L2, L3, S1, S2, S3 L2 <l1< td=""></l1<>

Date 1:

	Analysis of Variance Report
Page/Date/Time	1 09.10.2017 15:07:06
Database	Z:\Users\Benjamin\Documents\ ursery\Emergence-Zokekali.S0
Response	Emergence_Rate_Date_1

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	-1.0998	0.271437	Accept
Kurtosis Normality of Residuals	1.9187	0.055026	Accept
Omnibus Normality of Residuals	4.8908	0.086693	Accept
Modified-Levene Equal-Variance Test	1.8929	0.081241	Accept

Box Plot Section

Analysis	of Variance	Table

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	22591.7	2510.189	14.04	0.000000*	1.000000
S(A)	40	7150.926	178.7732			
Total (Adjusted)	49	29742.63				
Total	50					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_1 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=178.7732 Critical Value=4.3722

Group	Count	Mean	Different From Groups
Flodding 3 IR-84649.	1295.30		
	5	0	Salt 1 Pyimyanmarsein, Local 3 Taungpyan Salt 3 Sinthwelatt, Local 1 Baygyar
Flodding 2 Mekyut	5	0	Salt 1 Pyimyanmarsein, Local 3 Taungpyan Salt 3 Sinthwelatt, Local 1 Baygyar
Local 2 Kyarpyan	5	3.428571	Salt 1 Pyimyanmarsein, Local 3 Taungpyan Salt 3 Sinthwelatt, Local 1 Baygyar
Salt 2 IR-11T225	5	19.82906	Carl o Chimitana, 200al - Daygya
Flodding 1 Swarna S	ub-1		
	5	32.28465	
Zero Treatment Paws	sanyin		
	5	36.32479	
Salt 1 Pyimyanmarse			
	5	45.39326	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan
Local 3 Taungpyan	5	50.67961	Flodding 3 IR-84649.1295.30
			Flodding 2 Mekyut, Local 2 Kyarpyan
Salt 3 Sinthwelatt			
	5	53.80952	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan
Local 1 Baygyar	5	55,16129	Flodding 3 IR-84649.1295.30
THERAT		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Flodding 2 Mekyut, Local 2 Kyarpyan

Notes:

Date 2:

-						
			TATION DEC	Analy	sis of Variance F	Report
	Page/Date/Time	1	09.10.2017 15:	12:31		
	Database	Z:	Users\Benjamin	\Documents\	ursery\Emerge	nce-Zokekali.S0
	Response	C2	29			
	Tests of Assumption	tions	s Section			
				Test	Prob	Decision
	Assumption			Value	Level	(0.05)
	Skewness Normal	ity of	f Residuals	-1.3471	0.177950	Accept
	Kurtosis Normality	of F	Residuals	1.2972	0.194565	Accept
	Omnibus Normalit	y of	Residuals	3.4974	0.174003	Accept
	Modified-Levene E	qua	I-Variance Test	0.6228	0.733165	Accept

Box Plot Section

Analysis of Varian	ce Table					
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	7	4.025836	0.5751194	15.35	0.000000*	1.000000
S(A)	32	1.198847	3.746396E-0)2		
Total (Adjusted)	39	5.224683				
Total	40					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: C29 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=32 MSE=3.746396E-02 Critical Value=4.0236

Count	Mean	Different From Groups
5	0.6289557	Salt 2 IR-11T225, Flodding 1 Swarna Sub-1
		Zero Treatment Pawsanyin Salt 1 Pyimyanmarsein, Local 3 Taungpyan Salt 3 Sinthwelatt, Local 1 Baygyar
5	1,180854	Local 2 Kyarpyan
b-1		
5	1.378401	Local 2 Kyarpyan
anvin		
5	1.467836	Local 2 Kyarpyan
n		
5	1.474985	Local 2 Kyarpyan
5	1.57965	Local 2 Kyarpyan
5	1.641875	Local 2 Kyarpyan
	5 1b-1 5 anvin 5 5 5	5 0.6289557 5 1.180854 1b-1 1.378401 5 1.467836 0 5 5 1.474985 5 1.57965

Analysis of Variance Report

Page/Date/Time	3 09.10.2017 15:12:31
Database	Z:\Users\Benjamin\Documents\ ursery\Emergence-Zokekali.S0
Response	C29

Scheffe's Multiple-Comparison Test

Response: C29 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=32 MSE=3.746396E-02 Critical Value=4.0236

Group	Count	Mean	Different From Groups

Notes:

Without Transformation:

			Standard	
Term	Count	Mean	Error	Effect
All	50	24.3715		24.3715
A: Variety				
Flodding 1 Swarna Sub-1	5	25.69288	4.689334	1.321385
Flodding 2 Mekyut	5	0	4.689334	-24.3715
Flodding 3 IR-84649.1295.30	5	0	4.689334	-24.3715
Local 1 Baygyar	5	45.64516	4.689334	21.27366
Local 2 Kyarpyan	5	4.761905	4.689334	-19.60959
Local 3 Taungpyan	5	41.94175	4.689334	17.57025
Salt 1 Pyimyanmarsein	5	32.13483	4.689334	7.763332
Salt 2 IR-11T225	5	17.77778	4.689334	-6.593721
Salt 3 Sinthwelatt	5	45.33333	4.689334	20.96183
Zero Treatment Pawsanyin	5	30.42735	4.689334	6.055851

Date 3:

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	1.6868	0.091640	Accept
Kurtosis Normality of Residuals	1.5556	0.119809	Accept
Omnibus Normality of Residuals	5.2651	0.071894	Accept
Modified-Levene Equal-Variance Test	1.2350	0.301901	Accept

Box Plot Section

Analysis of Varian	ce Table					
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	29731.65	3303.517	15.98	0.000000*	1.000000
S(A)	40	8266.568	206.6642			
Total (Adjusted)	49	37998.22				
Total	50					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_3 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=206.6642 Critical Value=4.3722

Group	Count	Mean	Different From Groups
Flodding 3 IR-84649.1		Wean	Groups
	5	0	Salt 2 IR-11T225, Salt 3 Sinthwelatt Zero Treatment Pawsanyin Salt 1 Pyimyanmarsein, Local 1 Baygyar Local 3 Taungpyan
Flodding 2 Mekyut	5	0	Salt 2 IR-11T225, Salt 3 Sinthwelatt Zero Treatment Pawsanyin Salt 1 Pyimyanmarsein, Local 1 Baygyar Local 3 Taungpyan
Local 2 Kyarpyan	5	22.09524	Local 1 Baygyar, Local 3 Taungpyan
Flodding 1 Swarna Su	ub-1		
	5	36.4045	
Salt 2 IR-11T225	5	42.90598	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 3 Sinthwelatt			
	5	48.19048	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Zero Treatment Paws	anyin		
	5	51.62393	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 1 Pyimyanmarsei	in		
	5	54.30712	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Local 1 Baygyar	5	69.91936	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan
Local 3 Taungpyan	5	73.20388	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan

Notes:

		0, 0		12 14	10
sector and the sector of the			Analysis of Variance I	Report	
ger		2017 15:15:32			
			ents\ ursery\Emerge	nce-Zokekali.S0	
Response E	Emergend	ce_Rate_Date_4			
Tests of Assumption	ns Sectio	on			
		Test	Prob	Decision	
Assumption		Value	Level	(0.05)	
Skewness Normality	of Residu	uals 1.6328	0.102511	Accept	
Kurtosis Normality of			0.183589	Accept	
Omnibus Normality o	f Residua	als 4.4344	0.108916	Accept	
Modified-Levene Equ	al-Varian	ce Test 1.1969	0.323758	Accept	
Box Plot Section					
Analysis of Variance	e Table				
Source		Sum of	Mean	Prob	Power
Term	DF	Squares	Square F-Rat		(Alpha=0.05)
A: Variety	9	32298.71	3588.746 14.	7. T. T. T. T. T. T. L.	
S(A)	40	9614.964	240.3741		
Total (Adjusted)	49	41913.68	- 19191 11		
Total	50	11010100			
Torm clanificant at a		05			
Scheffe's Multiple-Co	mparison	Test			
Response: Emergence Term A: Variety	_Rate_Da	te_4			
Alpha=0.050 Error Ten	m=S(A) D	F=40 MSE=240.37	41 Critical Value=4.3722		
			Different From		
Group	Count	F=40 MSE=240.37 Mean			
	Count		Different From Groups		5
Group	Count 295.30	Mean	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo	in, Salt 2 IR-11T22 sanyin	5
Group Flodding 3 IR-84649.12	Count 295.30 5	Mean 0	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan	ain, Salt 2 IR-11T22 sanyin scal 1 Baygyar	
Group	Count 295.30	Mean	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo	ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut	Count 295.30 5	Mean O	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan	ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan	Count 295.30 5 5	Mean 0	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo	ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut	Count 295.30 5 5	Mean O	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan	ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan	Count 295.30 5 5 5 5 -5 -1 5	Mean 0 0 20.47619	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan	ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sub	Count 295.30 5 5 5 5 -5 -1 5	Mean 0 0 20.47619	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmase Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Local 1 Baygyar, Loc	ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin ocal 1 Baygyar sal 3 Taungpyan	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sub	Count 295.30 5 5 5 -1 5	Mean 0 0 20.47619 38.8015	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Local 1 Baygyar, Loc	ain, Salt 2 IR-11T22 sanyin bocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin bocal 1 Baygyar sal 3 Taungpyan 1295.30	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sut Salt 1 Pyimyanmarsein Salt 2 IR-11T225	Count 295.30 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0 0 20.47619 38.8015 49.3633	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmase Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Local 1 Baygyar, Loc	ain, Salt 2 IR-11T22 sanyin bocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin bocal 1 Baygyar sal 3 Taungpyan 1295.30	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sub Salt 1 Pyimyanmarsein	Count 295.30 5 5 5 5 5 5 5 5 5 5	Mean 0 0 20.47619 38.8015 49.3633 50.76923	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Local 1 Baygyar, Loc Flodding 3 IR-84649. Flodding 3 IR-84649. Flodding 3 IR-84649. Flodding 3 IR-84649.	ain, Salt 2 IR-11T22 sanyin bocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin boal 1 Baygyar aal 3 Taungpyan 1295.30 1295.30	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sut Salt 1 Pyimyanmarsein Salt 2 IR-11T225	Count 295.30 5 5 5 5 5 5 5 5 5 5 5 5	Mean 0 0 20.47619 38.8015 49.3633	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelat, Lo Local 3 Taungpyan Local 1 Baygyar, Loc Flodding 3 IR-846499. Flodding 3 IR-846499. Flodding 3 IR-846499.	ain, Salt 2 IR-11T22 sanyin bocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin boal 1 Baygyar aal 3 Taungpyan 1295.30 1295.30	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sut Salt 1 Pyimyanmarsein Salt 2 IR-11T225 Zero Treatment Pawsa	Count 295.30 5 5 5 5 5 5 5 5 5 5	Mean 0 0 20.47619 38.8015 49.3633 50.76923	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Local 1 Baygyar, Loc Flodding 3 IR-84649. Flodding 3 IR-84649. Flodding 3 IR-84649. Flodding 3 IR-84649.	ain, Salt 2 IR-11T22 sanyin bocal 1 Baygyar ain, Salt 2 IR-11T22 sanyin boal 1 Baygyar aal 3 Taungpyan 1295.30 1295.30	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sut Salt 1 Pyimyanmarsein Salt 2 IR-11T225	Count 295.30 5 5 5 -1 5 5 5 5 5 5 5 5	Mean 0 0 20.47619 38.8015 49.3633 50.76923 51.79487	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Local 1 Baygyar, Loc Flodding 3 IR-84649. Flodding 3 IR-84649. Flodding 2 Mekyut	ain, Salt 2 IR-11T22 sanyin ical 1 Baygyar ain, Salt 2 IR-11T22 sanyin ical 1 Baygyar al 3 Taungpyan 1295.30 1295.30	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sut Salt 1 Pyimyanmarsein Salt 2 IR-11T225 Zero Treatment Pawsa	Count 295.30 5 5 5 5 5 5 5 5 5 5	Mean 0 0 20.47619 38.8015 49.3633 50.76923	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelat, Lo Local 3 Taungpyan Local 1 Baygyar, Loc Flodding 3 IR-846499. Flodding 3 IR-846499. Flodding 3 IR-846499.	ain, Salt 2 IR-11T22 sanyin ical 1 Baygyar ain, Salt 2 IR-11T22 sanyin ical 1 Baygyar al 3 Taungpyan 1295.30 1295.30	
Group Flodding 3 IR-84649.12 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Sut Salt 1 Pyimyanmarsein Salt 2 IR-11T225 Zero Treatment Pawsa	Count 295.30 5 5 5 -1 5 5 5 5 5 5 5 5	Mean 0 0 20.47619 38.8015 49.3633 50.76923 51.79487	Different From Groups Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Salt 1 Pyimyanmarse Zero Treatment Paw Salt 3 Sinthwelatt, Lo Local 3 Taungpyan Local 1 Baygyar, Loc Flodding 3 IR-84649. Flodding 3 IR-84649. Flodding 3 IR-84649. Flodding 3 IR-84649.	ain, Salt 2 IR-11T22 sanyin local 1 Baygyar ain, Salt 2 IR-11T22 sanyin local 1 Baygyar aal 3 Taungpyan 1295.30 1295.30 1295.30 1295.30	

Notes:

Date 5:

The second of	Analysis of Variance Report
Page/Date/Time	1 09.10.2017 15:15:47
Database	Z:\Users\Benjamin\Documents\ ursery\Emergence-Zokekali.S0
Response	Emergence Rate Date 5

Tests of Assumptions Section

lesis of Assumptions Section	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	1.4205	0.155473	Accept
Kurtosis Normality of Residuals	0.8376	0.402278	Accept
Omnibus Normality of Residuals	2.7192	0.256761	Accept
Modified-Levene Equal-Variance Test	1.3411	0.247300	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	35522.68	3946.964	13.57	0.000000*	1.000000
S(A)	40	11631.94	290.7985			
Total (Adjusted)	49	47154.62				
Total	50					

1.1.1

100

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_5 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=290.7985 Critical Value=4.3722

			Different From
Group	Count	Mean	Groups
Flodding 3 IR-84649.1	295.30		
	5	0	Salt 1 Pyimyanmarsein, Salt 2 IR-11T225 Zero Treatment Pawsanyin Salt 3 Sinthwelatt, Local 1 Baygyar Local 3 Taungpyan
Flodding 2 Mekyut	5	0	Salt 1 Pyimyanmarsein, Salt 2 IR-11T225 Zero Treatment Pawsanyin Salt 3 Sinthwelatt, Local 1 Baygyar Local 3 Taungpyan
Local 2 Kyarpyan Flodding 1 Swarna Su	5 lb-1	22.85714	Local 1 Baygyar, Local 3 Taungpyan
	5	39.25093	
Salt 1 Pyimyanmarsei	n	1312230	
	5	52.8839	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 2 IR-11T225	5	53.4188	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Zero Treatment Paws	anvin		riodang 2 moldar
	5	56.92308	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 3 Sinthwelatt			•
	5	61.52381	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Local 1 Baygyar	5	76.53226	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan
Local 3 Taungpyan	5	76.60194	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan

Notes:

Date 6:

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	1.9323	0.053319	Accept
Kurtosis Normality of Residuals	1.4436	0.148854	Accept
Omnibus Normality of Residuals	5.8178	0.054535	Accept
Modified-Levene Equal-Variance Test	1.0463	0.421928	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	30270.49	3363.388	12.05	0.000000*	1.000000
S(A)	40	11167.52	279.188			
Total (Adjusted)	49	41438.01				
Total	50					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_6 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=279.188 Critical Value=4.3722

Group	Count	Mean	Different From Groups
Flodding 3 IR-84649.		moun	ereupe
	5	0	Salt 2 IR-11T225, Zero Treatment Pawsanyin Salt 1 Pyimyanmarsein, Salt 3 Sinthwelatt Local 3 Taungpyan, Local 1 Baygyar
Flodding 2 Mekyut	5	8.193832	Salt 1 Pyimyanmarsein, Salt 3 Sinthwelatt Local 3 Taungpyan, Local 1 Baygyar
Local 2 Kyarpyan Flodding 1 Swarna Si	5 ub-1	20.09524	Local 3 Taungpyan, Local 1 Baygyar
	5	40.07491	
Salt 2 IR-11T225	5	47.26496	Flodding 3 IR-84649.1295.30
Zero Treatment Paws	anyin		
	5	51.36752	Flodding 3 IR-84649.1295.30
Salt 1 Pyimyanmarse	in		
	5	55.95506	Flodding 3 IR-84649.1295.30
			Flodding 2 Mekyut
Salt 3 Sinthwelatt			
	5	58.95238	Flodding 3 IR-84649.1295.30
			Flodding 2 Mekyut
Local 3 Taungpyan	5	74.17476	Flodding 3 IR-84649.1295.30
			Flodding 2 Mekyut, Local 2 Kyarpyan
Local 1 Baygyar	5	74.27419	Flodding 3 IR-84649.1295.30
			Flodding 2 Mekyut, Local 2 Kyarpyan

Notes:

Analysis of Variance Report

Date 7:

E Contra Contra				nalysis of Va	iriance Rej	port	
Page/Date/Time		2017 15:1				- 7-listel 00	
Database Response	C30	enjamin\i	Jocume	nis\ ursery	\Emergenc	e-Zokekali.S0	
Tests of Assumpt	tions Sectior	n	T	Deal		Desisters	
Assumption			Test Value	Pro		Decision (0.05)	
Skewness Normal	ity of Residua	als	0.8029		2048	Accept	
Kurtosis Normality	of Residuals		0.9414		6519	Accept	
Omnibus Normality Modified-Levene			1.5308 0.9641		5155 3260	Accept Accept	
Box Plot Section							
Analysis of Varia	nce Table			1995 - C		Duch	
Source Term	DF	Sum of Square		Mean Square	F-Ratio	Prob Level	Power (Alpha=0.05)
A: Variety	9	364.478		40.49764	32.01	0.000000*	1.000000
S(A)	40	50.6097		1.265244	02.01	0.000000	
Total (Adjusted)	49	415.088	36				
Total * Term significant a	50 at alpha = 0.0)5					
Scheffe's Multiple-Co							
Response: C30							
Response: C30 Term A: Variety							
	erm=S(A) DF=	=40 MSE	=1.2652	244 Critical Va	lue=4.3722		
Term A: Variety Alpha=0.050 Error Te	rm=S(A) DF=			Different			
Term A: Variety Alpha=0.050 Error Te Group	Count	=40 MSE Mea					
Term A: Variety Alpha=0.050 Error Te	Count 1295.30	Меа		Different Groups	From		na Sub-1
Term A: Variety Alpha=0.050 Error Te Group	Count			Different Groups Local 2 K	From Yarpyan, Fl	odding 1 Swarr	
Term A: Variety Alpha=0.050 Error Te Group	Count 1295.30	Меа		Different Groups Local 2 K Salt 2 IR- Salt 1 Py	From yarpyan, Fl 11T225, Ze imyanmarse	odding 1 Swarr Pro Treatment P Pin, Salt 3 Sinth	awsanyin welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1	Count 1295.30 5	Mea 0	IN	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 1	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I	odding 1 Swarr Fro Treatment P Fin, Salt 3 Sinth Local 1 Baygya	awsanyin welatt r
Term A: Variety Alpha=0.050 Error Te Group	Count 1295.30	Mea 0		Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swarna S	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR-	awsanyin welatt r
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1	Count 1295.30 5	Mea 0	IN	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swama S atment Paw	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR-	awsanyin welatt [-11T225
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut	Count 1295.30 5 5	Меа 0 1.65	an 51649	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya	awsanyin welatt 1 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1	Count 1295.30 5	Меа 0 1.65	IN	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 3 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut	Count 1295.30 5 5	Меа 0 1.65	an 51649	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sir	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 3 IR-84649 athwelatt, Lo	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut	Count 1295.30 5 5	Mea 0 1.65 4.28	an 51649 33682	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 3 IR-84649 athwelatt, Lo	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan	Count 1295.30 5 5	Mea 0 1.65 4.28	an 51649	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sir Local 1 B Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 3 ISwarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 thwelatt, Lo iaygyar 3 IR-84649	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Su	Count 1295.30 5 5 5 1b-1 5	Mea 0 1.65 4.28 5.87	an 51649 33682 70474	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sir Local 1 B Flodding Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 thwelatt, Lo iaygyar 3 IR-84649 2 Mekyut	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan	Count 1295.30 5 5 5	Mea 0 1.65 4.28 5.87	an 51649 33682	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sir Local 1 B Flodding Flodding Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 3 ISwarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 thwelatt, Lo iaygyar 3 IR-84649	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Su	Count 1295.30 5 5 10-1 5 5	Mea 0 1.65 4.28 5.87 6.47	an 51649 33682 70474 70071	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sir Local 1 B Flodding Flodding Flodding Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 1 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ain, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 <u>Mekyut</u> Local 2 <u>Kyarpyan</u> Flodding 1 <u>Swarna</u> Su Salt 2 IR-11T225	Count 1295.30 5 5 10-1 5 5	Mea 0 1.65 4.28 5.87 6.47	an 51649 33682 70474	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sir Local 1 B Flodding Flodding Flodding Flodding Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 thwelatt, Lo iaygyar 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ain, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Su Salt 2 IR-11T225 Zero Treatment Pawsa	Count 1295.30 5 5 10-1 5 5 5 8 10-1 5 5 8 10-1 5 5	Mea 0 1.65 4.28 5.87 6.47	an 51649 33682 70474 70071	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sir Local 1 B Flodding Flodding Flodding Flodding Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 1 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ain, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 <u>Mekyut</u> Local 2 <u>Kyarpyan</u> Flodding 1 <u>Swarna</u> Su Salt 2 IR-11T225	Count 1295.30 5 5 10-1 5 5 5 8 10-1 5 5 8 10-1 5 5	Mea 0 1.65 4.28 5.87 6.47 6.92	an 51649 33682 70474 70071 27653	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sin Local 1 B Flodding Flodding Flodding Flodding Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 thwelatt, Lo aygyar 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya .1295.30 .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Su Salt 2 IR-11T225 Zero Treatment Pawsa Salt 1 Pyimyanmarsei	Count 1295.30 5 5 5 4b-1 5 5 5 8 anyin 5	Mea 0 1.65 4.28 5.87 6.47 6.92	an 51649 33682 70474 70071	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sin Local 1 B Flodding Flodding Flodding Flodding Flodding Flodding Flodding	From yarpyan, Fl 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 thwelatt, Lo iaygyar 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya .1295.30 .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Su Salt 2 IR-11T225 Zero Treatment Pawsa	Count 1295.30 5 5 5 10-1 5 5 anyin 5	Mea 0 1.65 4.28 5.87 6.47 6.92 7.10	an 51649 33682 70474 70071 27653 02643	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sin Local 1 B Flodding Flodding Flodding Flodding Flodding Flodding Flodding Flodding	From yarpyan, FI 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya .1295.30 .1295.30 .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Su Salt 2 IR-11T225 Zero Treatment Pawsa Salt 1 Pyimyanmarsei	Count 1295.30 5 5 5 4b-1 5 5 5 8 anyin 5	Mea 0 1.65 4.28 5.87 6.47 6.92 7.10	an 51649 33682 70474 70071 27653	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sin Local 1 B Flodding Flodding Flodding Flodding Flodding Flodding Flodding Flodding Flodding Flodding	From yarpyan, FI 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya .1295.30 .1295.30 .1295.30	awsanyin welatt 11T225 welatt
Term A: Variety Alpha=0.050 Error Te Group Flodding 3 IR-84649.1 Flodding 2 Mekyut Local 2 Kyarpyan Flodding 1 Swarna Su Salt 2 IR-11T225 Zero Treatment Pawsa Salt 1 Pyimyanmarsei	Count 1295.30 5 5 5 10-1 5 5 anyin 5	Mea 0 1.65 4.28 5.87 6.47 6.92 7.10 7.39	an 51649 33682 70474 70071 27653 02643	Different Groups Local 2 K Salt 2 IR- Salt 1 Py Local 3 T Flodding Zero Trea Salt 1 Py Local 3 T Flodding Salt 3 Sin Local 1 B Flodding Flodding Flodding Flodding Flodding Flodding Flodding Flodding Flodding	From yarpyan, FI 11T225, Ze imyanmarse aungpyan, I 1 Swarna S atment Paw imyanmarse aungpyan, I 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649 2 Mekyut 3 IR-84649	odding 1 Swarr ro Treatment P ein, Salt 3 Sinth Local 1 Baygya Sub-1, Salt 2 IR- sanyin ein, Salt 3 Sinth Local 1 Baygya .1295.30 ocal 3 Taungpya .1295.30 .1295.30 .1295.30 .1295.30 .1295.30 .1295.30 .0cal 2 Kyarpya	awsanyin welatt 11T225 welatt

Without Transformation: Means and Effects Section Standard Term Count Error Effect Mean All 50 40.32273 40.32273 A: Variety Flodding 1 Swarna Sub-1 Flodding 2 Mekyut Flodding 3 IR-84649.1295.30 5 36.92884 6.983036 -3.393887 5 2.819383 6.983036 -37.50334 5 0 6.983036 -40.32273 Local 1 Baygyar 5 73.46774 6.983036 33.14502 Local 2 Kyarpyan 5 19.71428 6.983036 -20.60844 5 Local 3 Taungpyan 30.84232 71.16505 6.983036 Salt 1 Pyimyanmarsein Salt 2 IR-11T225 5 11.7372 52.05993 6.983036 2.412317 5 42.73504 6.983036 5 15.29632 Salt 3 Sinthwelatt 55.61905 6.983036 Zero Treatment Pawsanyin 5 8.395223 48.71795 6.983036

Date 8:

ute 0.				
	CONTRACT/ONDERC	Analy	sis of Variance F	Report
Page/Date/Time	1 09.10.2017 15	:18:58		
Database	Z:\Users\Benjamin	\Documents\	ursery\Emerge	nce-Zokekali.S0
Response	C31			
Tests of Assumption	tions Section			
		Test	Prob	Decision
Assumption		Value	Level	(0.05)
Skewness Normal	ity of Residuals	0.3272	0.743554	Accept
Kurtosis Normality	of Residuals	0.9942	0.320110	Accept
Omnibus Normalit	y of Residuals	1.0955	0.578242	Accept
Modified-Levene E	qual-Variance Test	0.9352	0.505975	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	353.6102	39.29002	34.48	0.000000*	1.000000
S(A)	40	45.57774	1.139443			
Total (Adjusted)	49	399.188				
Total	50					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: C31 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=1.139443 Critical Value=4.3722

Group	Count	Mean	Different From Groups
Flodding 3 IR-84649.			ereupe
	5	0	Local 2 Kyarpyan, Flodding 1 Swarna Sub-1 Salt 2 IR-11T225, Salt 1 Pyimyanmarsein Zero Treatment Pawsanyin Salt 3 Sinthwelatt, Local 1 Baygyar
			Local 3 Taungpyan
Flodding 2 Mekyut	5	1.290644	Flodding 1 Swarna Sub-1, Salt 2 IR-11T225 Salt 1 Pyimyanmarsein Zero Treatment Pawsanyin
			Salt 3 Sinthwelatt, Local 1 Baygyar Local 3 Taungpyan
Local 2 Kyarpyan	5	4.129037	Flodding 3 IR-84649.1295.30
			Salt 3 Sinthwelatt, Local 1 Baygyar Local 3 Taungpyan
Flodding 1 Swarna Su	ub-1		
J. Annua	5	5.690566	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 2 IR-11T225	5	5.844167	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 1 Pyimyanmarse	in		
	5	6.943414	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Zero Treatment Paws	anyin		
	5	6.97888	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 3 Sinthwelatt			
	5	7.154229	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan

Local 1 Baygyar	5	8.054657	Flodding 3 IR-84649.1295.30
			Flodding 2 Mekyut, Local 2 Kyarpyan
Local 3 Taungpyan	5	8.190391	Flodding 3 IR-84649.1295.30
			Flodding 2 Mekyut, Local 2 Kyarpyan

Without Transformation:

			Standard	
Term	Count	Mean	Error	Effect
All	50	37.44258		37.44258
A: Variety				
Flodding 1 Swarna Sub-1	5	34.53183	6.203587	-2.91075
Flodding 2 Mekyut	5	1.85022	6.203587	-35.59237
Flodding 3 IR-84649.1295.30	5	0	6.203587	-37.44258
Local 1 Baygyar	5	65.40323	6.203587	27.96064
Local 2 Kyarpyan	5	18.66667	6.203587	-18.77592
Local 3 Taungpyan	5	68.25243	6.203587	30.80984
Salt 1 Pyimyanmarsein	5	49.4382	6.203587	11.99562
Salt 2 IR-11T225	5	34.8718	6.203587	-2.57079
Salt 3 Sinthwelatt	5	52.09524	6.203587	14.65265
Zero Treatment Pawsanyin	5	49.31624	6.203587	11.87365

Date 9:

Juic J.					
		Analy	sis of Variance F	Report	_
Page/Date/Time	1 09.10.2017 15	:20:10			
Database	Z:\Users\Benjamin	\Documents\	ursery\Emerge	nce-Zokekali.S0	
Response	C32				
Tests of Assumption	tions Section				
		Test	Prob	Decision	
Assumption		Value	Level	(0.05)	
Skewness Normal	ity of Residuals	0.5181	0.604408	Accept	
Kurtosis Normality	of Residuals	1.2214	0.221949	Accept	
Omnibus Normalit	y of Residuals	1.7601	0.414757	Accept	
Modified-Levene E	qual-Variance Test	1.2543	0.291263	Accept	

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	364.9805	40.55339	36.37	0.000000*	1.000000
S(A)	40	44.59865	1.114966			
Total (Adjusted)	49	409.5792				
Total	50					

* Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: C32 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=1.114966 Critical Value=4.3722

Group	Count	Mean	Different From Groups
Flodding 3 IR-84649.		Mean	Gloups
	5	0	Local 2 Kyarpyan, Flodding 1 Swarna Sub-1 Salt 2 IR-11T225, Zero Treatment Paysanyin Salt 1 Pyinyanmarsein, Salt 3 Sinthwelatt Local 1 Baygyar, Local 3 Taungpyan
Flodding 2 Mekyut	5	1.297884	Local 2 Kyarpyan, Flodding 1 Swarna Sub-1 Salt 2 IR-11T225, Zero Treatment Pawsanyin Salt 1 Pyimyanmarsein, Salt 3 Sinthwelatt Local 1 Baygyar, Local 3 Taungpyan
Local 2 Kyarpyan	5	4.218827	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Salt 3 Sinthwelatt Local 1 Baygyar, Local 3 Taungpyan
Flodding 1 Swarna S	ub-1		
	5	5.81026	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 2 IR-11T225	5	6.270216	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Zero Treatment Paws	sanvin		
	5	6.809451	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 1 Pyimyanmarse	ein		
	5	7.005553	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 3 Sinthwelatt			
	5	7.187403	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan
Local 1 Baygyar	5	8.139907	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan

	Analysis of Variance Report
Page/Date/Time	4 09.10.2017 15:20:10
Database Response	Z:\Users\Benjamin\Documents\ ursery\Emergence-Zokekali.S0 C32

Scheffe's Multiple-Comparison Test

Response: C32 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=1.114966 Critical Value=4.3722

Group	Count	Mean	Different From Groups
Local 3 Taungpyan	5	8.494177	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan

Notes:

This report provides multiple comparison tests for all possible contrasts among the the means. These contrasts may involve more groups than just each pair, so the method is much stricter than need be. The <u>Tukey-Kramer</u> method provides more accurate results when only pairwise comparisons are needed.

Without Transformation:

			Standard	
Term	Count	Mean	Error	Effect
All	50	38.69917		38.69917
A: Variety				
Flodding 1 Swarna Sub-1	5	36.32959	6.309644	-2.369587
Flodding 2 Mekyut	5	2.290749	6.309644	-36.40842
Flodding 3 IR-84649.1295.30	5	0	6.309644	-38.69917
Local 1 Baygyar	5	66.77419	6.309644	28.07502
Local 2 Kyarpyan	5	18.85714	6.309644	-19.84203
Local 3 Taungpyan	5	73.98058	6.309644	35.28141
Salt 1 Pyimyanmarsein	5	50.11236	6.309644	11.41319
Salt 2 IR-11T225	5	39.82906	6.309644	1.129885
Salt 3 Sinthwelatt	5	51.80952	6.309644	13.11035
Zero Treatment Pawsanyin	5	47.00855	6.309644	8.309372

Date 10:

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	0.4129	0.679679	Accept
Kurtosis Normality of Residuals	1.4691	0.141805	Accept
Omnibus Normality of Residuals	2.3287	0.312118	Accept
Modified-Levene Equal-Variance Test	0.7397	0.670586	Accept

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05
A: Variety	9	307.1937	34.13263	35.76	0.000000*	1.000000
S(A)	40	38.17889	0.9544723			
Total (Adjusted)	49	345.3726				
Total	50					

Scheffe's Multiple-Comparison Test

Response: C33 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=0.9544723 Critical Value=4.3722

Group Flodding 3 IR-84649	Count .1295.30	Mean	Different From Groups
	5	0	Local 2 Kyarpyan, Flodding 1 Swarna Sub-1 Salt 2 IR-11T225, Salt 1 Pyimyanmarsein Salt 3 Sinthwelatt Zero Treatment Pawsanyin Local 3 Taungpyan, Local 1 Baygyar
Flodding 2 Mekyut	5	1.319117	Local 2 Kyarpyan, Flodding 1 Swarna Sub-1 Salt 2 IR-11T225, Salt 1 Pyimyanmarsein Salt 3 Sinthwelatt Zero Treatment Pawsanyin Local 3 Taungpyan, Local 1 Baygyar
Local 2 Kyarpyan	5	4.482915	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 1 Baygyar
Flodding 1 Swarna S	ub-1		riodding 2 Merydt, Eocar i Daygyar
	5	5.210293	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 2 IR-11T255	5	5.662737	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 1 Pyimyanmarse	5	6.774659	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 3 Sinthwelatt	5	6.794161	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Zero Treatment Paw	sanyin		i i i i i i i i i i i i i i i i i i i
	5	6.872768	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
			is of Variance Report
. agere aller this	4 09.10.2017		
	Z:\Users\Benjai	min\Documents\	. ursery\Emergence-Zokekali.S0

Database	Z:\Users\Benjamin\Documents\ ursery\Emergence-Zokekali.S0
Response	C33

WIthout Transformation:

Scheffe's Multiple-Comparison Test

Response: Emergence_Rate_Date_10 Term A: Variety

Alpha=0.050 Error Term=S(A) DF=40 MSE=146.7707 Critical Value=4.3722

Group	Count	Mean	Different From Groups
Flodding 3 IR-84649.1	1295.30		
	5	0	Salt 1 Pyimyanmarsein, Salt 3 Sinthwelatt Zero Treatment Pawsanyin Local 3 Taungpyan, Local 1 Baygyar
Flodding 2 Mekyut	5	2.202643	Salt 1 Pyimyanmarsein, Salt 3 Sinthwelatt Zero Treatment Pawsanyin Local 3 Taungpyan, Local 1 Baygyar
Local 2 Kyarpyan	5	21.04762	Local 1 Baygyar
Flodding 1 Swarna Su	ıb-1		
	5	28.83895	
Salt 2 IR-11T225	5	32.47863	
Salt 1 Pyimyanmarsei	n		
	5	46.66667	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Salt 3 Sinthwelatt			
	5	46.76191	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Zero Treatment Paws	anyin		
	5	48.20513	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Local 3 Taungpyan	5	52.52427	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut
Local 1 Baygyar	5	61.85484	Flodding 3 IR-84649.1295.30 Flodding 2 Mekyut, Local 2 Kyarpyan

Mataa

Plant Height Nursery

Boyargyi:

Tests of Assumptions Section

	Test	Prob	Decision
Assumption	Value	Level	(0.05)
Skewness Normality of Residuals	-2.6525	0.007989	Reject
Kurtosis Normality of Residuals	5.6954	0.000000	Reject
Omnibus Normality of Residuals	39.4738	0.000000	Reject
Modified-Levene Equal-Variance Test	7.1523	0.000000	Reject

Box Plot Section

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	9	77036.53	8559.615	243.67	0.000000*	1.000000
S(A)	490	17212.44	35.12743			
Total (Adjusted)	499	94248.98				
Total	500					

* Term significant at alpha = 0.05

Kruskal-Wallis One-Way ANOVA on Ranks Hypotheses

HO: All medians are equal.

Ha: At least two medians are different.

Test Results

		Chi-Square	Prob	
Method	DF	(H)	Leve	Decision (0.05)
Not Corrected for Ties	9	413.5424	0.000000	Reject HO
Corrected for Ties	9	413.5504	0.000000	Reject HO

Number Sets of Ties	150
Multiplicity Factor	2418

Kruskal-Wallis Multiple-Comparison Z-Value Test (Dunn's Test)

Plant_Height	Swarna Sub-1	Mekyut	IR-84649.1295.30	Baygy	arKyarpyan
Flodding 1 Swarna Sub-1	0.0000	10.5374	10.5374	5.5475	3.5832
Flodding 2 Mekyut	10.5374	0.0000	0.0000	4.9899	6.9542
Flodding 3 IR-84649.1295.30	10.5374	0.0000	0.0000	4.9899	6.9542
Local 1 Baygyar	5.5475	4.9899	4.9899	0.0000	1.9643
Local 2 Kyarpyan	3.5832	6.9542	6.9542	1.9643	0.0000
Local 3 Taungpyan	7.0767	3.4607	3.4607	1.5293	3.4936
Salt 1 Pyimyanmarsein	3.5088	14.0462	14.0462	9.0562	7.0920
Salt 2 IR-11T255	1.2109	11.7483	11.7483	6.7584	4.7941
Salt 3 Sinthwelatt	1.3701	9.1673	9.1673	4.1774	2.2131
Zero Treatment Pawsanyin	5.6817	4.8557	4.8557	0.1343	2.0986

Regular Test: Medians significantly different if z-value > 1.9600 Bonferroni Test: Medians significantly different if z-value > 3.2608

Analysis of Variance Report

0 00.10.2017 10.10.10	
Plant_Height	
	6 06.10.2017 15:13:19 Plant_Height

Kruskal-Wallis Multiple-Comparison Z-Value Test (Dunn's Test)

Plant Height	Taungpyan	Pyimyanmarsein	IR-11T255	Sinthwe	elatt Pawsanyin
Flodding 1 Swarna Sub-1	7.0767	3.5088	1.2109	1.3701	5.6817
Flodding 2 Mekyut	3.4607	14.0462	11.7483	9.1673	4.8557
Flodding 3 IR-84649.1295.30	3.4607	14.0462	11.7483	9.1673	4.8557
Local 1 Baygyar	1.5293	9.0562	6.7584	4.1774	0.1343
Local 2 Kyarpyan	3.4936	7.0920	4.7941	2.2131	2.0986
Local 3 Taungpyan	0.0000	10.5855	8.2876	5.7067	1.3950
Salt 1 Pyimyanmarsein	10.5855	0.0000	2.2979	4.8789	9.1905
Salt 2 IR-11T255	8.2876	2.2979	0.0000	2.5810	6.8926
Salt 3 Sinthwelatt	5.7067	4.8789	2.5810	0.0000	4.3117
Zero Treatment Pawsanyin	1.3950	9.1905	6.8926	4.3117	0.0000
Regular Test: Medians significant	tly different if z-v	alue > 1.9600			

Otom dand

Bonferroni Test: Medians significantly different if z-value > 3.2608

			Standard	
Term	Count	Mean	Error	Effect
All	500	56.9058		56.9058
A: Variety				
Flodding 1 Swarna Sub-1	50	46.432	0.8381817	-10.4738
Flodding 2 Mekyut	50	75.126	0.8381817	18.2202
Flodding 3 IR-84649.1295.30	50	75.126	0.8381817	18.2202
Local 1 Baygyar	50	60.892	0.8381817	3.9862
Local 2 Kyarpyan	50	55.448	0.8381817	-1.4578
Local 3 Taungpyan	50	65.398	0.8381817	8.4922
Salt 1 Pyimyanmarsein	50	36.752	0.8381817	-20.1538
Salt 2 IR-11T255	50	42.992	0.8381817	-13.9138
Salt 3 Sinthwelatt	50	49.408	0.8381817	-7.4978
Zero Treatment Pawsanyin	50	61.484	0.8381817	4.5782

Zokekali:

Analysis of Variance Report

	Analysis of variance Report
Page/Date/Time	2 09.10.2017 15:27:00
Database	Z:\Users\Benjamin\Documents\ ery\Plant-Height-Zokekali.S0
Response	Plant_Height

Means and Effects Section

Means and Enects Section				
			Standard	
Term	Count	Mean	Error	Effect
All	400	36.89675		36.89675
A: Variety				
Flodding 1 Swarna Sub-1	50	32.08	0.5864503	-4.81675
Local 1 Baygyar	50	43.11	0.5864503	6.21325
Local 2 Kyarpyan	50	44.698	0.5864503	7.80125
Local 3 Taungpyan	50	41.364	0.5864503	4.46725
Salt 1 Pyimyanmarsein	50	23.77	0.5864503	-13.12675
Salt 2 IR-11T255	50	32.85	0.5864503	-4.04675
Salt 3 Sinthwelatt	50	32.402	0.5864503	-4.49475
Zero Treatment Pawsanyin	50	44.9	0.5864503	8.00325
Zero freatment Fawsanyin	50	44.9	0.0004000	0.00325
Plots of Means Section				
Fiots of Means Section				
Tests of Assumptions Section				
	Test	Prob	Decision	
Assumption	Value	Level	(0.05)	
Skewness Normality of Residuals	-1.9241	0.054342	Accept	
Kurtosis Normality of Residuals	1.0580	0.290066	Accept	
	4.8215	0.089749		
Omnibus Normality of Residuals	4.0215	0.009749	Accept	

Box Plot Section

Analysis of Varian Source	ce lable	Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Variety	7	20778.2	2968.314	172.61	0.000000*	1.000000
S(A)	392	6740.91	17.1962			
Total (Adjusted)	399	27519.11				
Total	400					

0.001033

Reject

* Term significant at alpha = 0.05

Kruskal-Wallis One-Way ANOVA on Ranks

Modified-Levene Equal-Variance Test 3.5494

Hypotheses HO: All medians are equal.

Ha: At least two medians are different.

Test Results

Method Not Corrected for Ties Corrected for Ties	DF 7 7	Chi-Square (H) 298.7877 298.7979	Prob Level 0.000000 0.000000	Decision (0.05) Reject HO Reject HO
Number Sets of Ties Multiplicity Factor	112 2184			

Group Detail

Zero Treatment Pawsanyin

Kruskal-Wallis Multiple-Comparison Z-Value Test (Dunn's Test)

Plant_Height	Flodding 1 Swarna Sub-	1 Local 1 B	aygyarLocal 2 Ky	arpyan Local 3	Taungpyan Salt	1
Pyimyanmarsein						
Flodding 1 Swarna	Sub-1 0.0000	7.1082	8.0878	5.9790	3.9879	
Local 1 Baygyar	7.1082	0.0000	0.9796	1.1292	11.0961	
Local 2 Kyarpyan	8.0878	0.9796	0.0000	2.1088	12.0757	
Local 3 Taungpyan	5.9790	1.1292	2.1088	0.0000	9.9669	
Salt 1 Pvimvanmars	sein 3.9879	11.0961	12.0757	9.9669	0.0000	
Salt 2 IR-11T255	0.5008	6.6074	7.5870	5.4782	4.4887	
Salt 3 Sinthwelatt	0.1765	6.9318	7,9114	5.8026	4.1643	
Zero Treatment Pav	vsanvin 8.1189	1.0107	0.0311	2,1399	12,1068	
	ans significantly different i	f z-value > 1.9600)		100 C 100	

Bonferroni Test: Medians significantly different if z-value > 3.1237

Kruskal-Wallis Multiple-Comparison Z-Value Test (Dunn's Test)

Plant_Height Salt 2 IR	-11T255	Salt 3 Sinth	welatt	
Flodding 1 Swarna Sub-1	0.5008	0.1765	8.1189	
Local 1 Baygyar	6.6074	6.9318	1.0107	
Local 2 Kyarpyan	7.5870	7.9114	0.0311	
Local 3 Taungpyan	5.4782	5.8026	2.1399	
Salt 1 Pyimyanmarsein	4.4887	4.1643	12.1068	
Salt 2 IR-11T255	0.0000	0.3244	7.6181	
Salt 3 Sinthwelatt	0.3244	0.0000	7.9425	
Zero Treatment Pawsanyin	7.6181	7.9425	0.0000	
Regular Test: Medians signifi			<u>_</u>	

Bonferroni Test: Medians significantly different if z-value > 3.1237

Results Statistical Analysis Trials

Plant Height

Boyargyi Summary		
Weeks after	Significance of Variety (Friedman Test, 10	Significant differences (Wilcoxon-
Transplanting	Factors, 5 Blocks)	Wilcox Test n=5 k=10)
1	Yes (Q= 31.21, p<0.01)	\$1 <l1, f2<="" l3,="" td=""></l1,>
		S2 <l3< td=""></l3<>
2	Yes (Q= 28.94, p<0.01)	S1 <l3, 0t<="" td=""></l3,>
3	Yes (Q= 17.73, p=0.04)	
4	Yes (Q= 22.35, p<0.01)	S1, S2 <l2< td=""></l2<>
5	Yes (Q= 33.39, p<0.01)	\$1, \$2, F1< L2
		\$1, \$2< L3
6	Yes (Q= 36.36, p<0.01)	S1, S2, F1 < L2
		\$1, \$2< L3
7	Yes (Q= 37.01, p<0.01)	S1, S2 <l1, l2,="" l3<="" td=""></l1,>
8	Yes (Q= 34.96, p<0.01)	\$1 <l1< td=""></l1<>
		\$1, \$2< L2, L3
9	Yes (Q= 35.26, p<0.01)	S1< 0T, L1, L3
		\$1, \$2 < L2
10	Yes (Q= 33.17, p<0.01)	S1 < L1, L3
		\$1, \$2< L2
11	Yes (Q= 28.05, p<0.01)	\$1 <l1, l2<="" td=""></l1,>

Date 1:

			Analysis of Va	riance Repo	rt	
Page/Date/Time Database		2017 11:01:37	uments\ ial\PH+	T+I C-Data-	Boyarovi S0	
Response	Height_Da			TILO-Data-	boyargyi.oo	
Analysis of Variar	nce Table					
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Farmer_Village	4	4264.45	1066.113	22.53	0.000000*	
B: Variety	9	11243.03	1249.226	8.87	0.000001*	0.999997
AB	36	5069.146	140.8096	2.98	0.000000*	
S	450	21296.56	47.32569			
Total (Adjusted)	499	41873.19				
Total	500					
* Term significant a	t alpha = 0.	05				
Friedman Test	Section					
	F	riedman		Prob		Concordance
Ties	(0	2)	DF	Level	((W)
Ignored		1.210909	9	0.0002	and the second second second	0.693576
Correction		1.210909	9	0.0002		0.693576
Conection	5	1.210309	9	0.0002	.12	5.085570
Multiplicity	0					
3. 3.						

	Analysis of Variance Report
Page/Date/Time	2 07.10.2017 11:01:37
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Height_Date1

Means and Effects Section

means and En	ects Sec	non							1.1	
Tom				Count				Standa	ra	Effect.
Term				Count		Mean		Error		Effect
All				500		46.7412				46.7412
A: Farmer_Villa	ge									
1				100		50.095		0.68793	367	3.3538
2				100		47.961		0.68793	367	1.2198
3				100		48.556		0.68793		1.8148
4				100		45.309		0.68793		-1.4322
									The second se	
5				100		41.785		0.68793	367	-4.9562
B: Variety										
Flodding 1 Saw	vanar sat-	-1		50		45.754		1.67815	52	-0.9872
Flodding 2 Mek	cvut			50		51.422		1.67815	52	4.6808
Flodding 3 IR-8		95.30		50		42.002		1.67815		-4.7392
Local 1 Baygya				50		50.586		1.6781		3.8448
Local 2 Kyarpy				50		49.852		1.6781		3.1108
Local 3 Taungp				50		53.422		1.6781		6.6808
Salt 1 Pyimyan				50		37.25		1.6781		-9.4912
Salt 2 IR-225	marsein			50		42.716		1.6781		-4.0252
Salt 3 Sinthwel				50		45.842		1.6781		-0.8992
Zero Treatment			ayar	50		48.566		1.6781	52	1.8248
AD. Correct Vill Plant Height Date1 Z			2 Kyarr In	cal 3 Tauni Salt 1 P	vimvs S	alt 2 (R-11T Salt	3 Sinthw F	lodding 1 Sv Flod	ding 2 M Flo	dding 3 IR-84649,1295.30
Zero Treatment Pawsanyin	0	6	3	13	26	18	7	9	8	15
Local 1 Baygyar	6	0	3	7	32	24	13	15	2	21
Local 2 Kyarpyan	3	3	0	10	29	21	10	12	5	18
ocal 3 Taungpyan	13	7	10	0	39	31	20	22	5	28
alt 1 Pyimyanmarsein	26	32	29	39	D	8	19	17	34	11
alt 2 IR-11T225	18	24	21	31	8	0	11	9	26	3
alt 3 Sinthwelatt	7	13	10	20	19	11	0	2	15	8
lodding 1 Swarna Sub-1	9	15	12	22	17	9	2	0	17	6
Flodding 2 Mekyut	8	2	5	5	34	26	15	17	0	23
lodding 3 IR-84649.1295.30	15	21	18	28	11	3	8	6	23	0

Date 2:

		100000	Analysis of Va	riance Repo	rt	
Page/Date/Time	1 07.10.	2017 11:32:27				
Database	Z:\Users\E	Benjamin\Doci	uments\ ial\PH+	T+LC-Data-	Boyargyi.S0	
Response	Height_Da					
Analysis of Varian	ce Table					
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Farmer Village	4	5123.209	1280.802	16.07	0.000000*	
B: Variety	9	11645.31	1293.924	8.57	0.000001*	0.999994
AB	36	5435.6	150.9889	1.89	0.001902*	
S	385	30689.56	79.71313			
Total (Adjusted)	434	53850.68				
Total	435					
* Term significant a	t alpha = 0.	.05				
	t alpha = 0. ection			Prob		Concordance
* Term significant a	t alpha = 0. ection Fr	iedman	DE	Prob		
* Term significant a Friedman Test So Ties	t alpha = 0. ection Fr (Q	iedman)	DF	Level	(Concordance W)
* Term significant a Friedman Test So Ties gnored	t alpha = 0. ection Fr (Q 28	iedman) .941818	9	Level 0.0006	63	(W) 0.643152
* Term significant a Friedman Test So Ties	t alpha = 0. ection Fr (Q 28	iedman)		Level	63	W)
* Term significant a Friedman Test So Ties gnored	t alpha = 0. ection Fr (Q 28	iedman) .941818	9	Level 0.0006	63	(W) 0.643152
* Term significant a Friedman Test So Ties gnored Correction	t alpha = 0. ection Fr (Q 28 28	iedman) .941818	9 9	Level 0.0006	63 (63 (W) 0.643152 0.643152
* Term significant at Friedman Test So Fies Ignored Correction Multiplicity	t alpha = 0. ection Fr (Q 28 28 0	iedman) .941818	9 9 Analysi	Level 0.0006 0.0006	63 (63 (W) 0.643152 0.643152
* Term significant a Friedman Test So Ties gnored Correction	t alpha = 0. ection Fr (Q 28 28 0 0	iedman) .941818 .941818 10.2017 11:	9 9 Analysi	Level 0.0006 0.0006 s of Varia	63 (63 (nce Repo	W) 0.643152 0.643152 rt

Wearis and El		lion						Standa	rd	
Term				Count		Mean		Error		Effect
All				435		51.0092				50.99812
A: Farmer_Vill	200			400		01.0002				00.00012
	aye							0.0007	- 40	4 005 400
1				86		55.46511		0.96275		4.325499
2				83		47.03133	3	0.97999	996	-3.893707
2 3				84		53.6857	1	0.97414	188	2.547995
4				97		52.27423	3	0.90652	235	1.311884
5				85		46.29647		0.96840		-4.291671
B: Variety						10.20011		0.00010		1.201011
Flodding 1 Sav	vanar sat-	1		44	1.2	49.55227	7	1.85244	19	-1.539791
		5		43		54.72326		1.87386		2.746995
Flodding 2 Me										
Flodding 3 IR-		5.30		47		48.25319	9	1.7923		-2.64956
Local 1 Baygy	ar			39		54.2		1.96761	15	2.752321
Local 2 Kyarpy				46	- 1	54.89348	3	1.81173	3	3.960829
Local 3 Taung				43		59.1372	1	1.87386	55	7.99844
Salt 1 Pyimyar				46		39.6913		1.81173	3	-11.14373
Salt 2 IR-225				45		45.89333	3	1.83175		-5.148274
Salt 3 Sinthwe	latt			45		49.75333		1.83175		-1.283227
		in/Mag		37		56.10811				
Zero Treatmer			ayar	57		50.1001	2	2.02009	94	4.305995
ant_Height_Date2			al 2 Kyarp Lo	cal 3 Tauni Salt 1	Pyimya Sa	alt 2 IR-11T: Salt	3 Sinthw F	lodding 1 Sv Flod	Iding 2 M Fk	odding 3 IR-84649.1295.3
ero Treatment Pawsanyin	0	3	1	6	31	24	15	16	2	19
ocal 1 Baygyar	3	0	2	9	28	21	12	13	1	16
ocal 2 Kyarpyan	1	2	0	7	30	23	14	15	1	18
ocal 3 Taungpyan	6 31	9	7	0	37	30	21	22	8 29	25
alt 1 Pylmyanmarsein alt 2 IR-11T225	24	28	30 23	37 30	0	0	16	15	29	12
alt 3 Sinthwelatt	15	12	14	21	16	9	0	1	13	4
lodding 1 Swarna Sub-1	15	12	14	22	15	8	1	0	13	3
lodding 2 Mekyut	2	13	1	8	29	22	13	14	0	17
lodding 3 IR-84649.1295.30		16	18	25	12	5	4	3	17	0

ate 3:									
Page/Date/Tim	e 1	07.10.2	2017 11:45		nalysis of	Variar	nce Repo	rt	
Database Response	Z:\U	Jsers\B ight_Da		ocume	ents\ ial\	PH+T+	LC-Data-	Boyargyi.S0	15
Analysis of Va	riance T	able							
Source			Sum of		Mean			Prob	Power
Term		DF	Squares		Square		F-Ratio	Level	(Alpha=0.05)
A: Farmer_Villa	age	4	6502.011		1625.503		13.25	0.000000*	
B: Variety	0	9	8110.166		901.1296		3.43		
AB		36	9453.615		262.6004		2.14	0.000234*	Provension and the second
S		397	48714.45		122.7064				
Total (Adjusted Total)	446 447	74995.42		1000				
* Term significa	ant at alpl	ha = 0.0)5						
Friedman Test	Section	n							
		Fried	man			Pro	b	Conco	rdance
lies		(Q)		DF		Lev	el	(W)	
gnored			7273	9			38473	0.3939	39
Correction			7273	9			38473	0.3939	
Concouon		11.12		5		0.00	0110	0.0000	
Multiplicity		0							
					Analysi	s of Va	ariance I	Report	
Page/Date/Tim	e 2	07.10	.2017 11:	45:50					
Database						ial\PH	+T+LC-D	Data-Boyar	avi.S0
Response		eight D				200.00			
	1 IC		alo_o						
			410_0						
Means and Ef			410_0					Standard	
Means and Ef Term			0.0_0	Cou		lean		Standard Error	Effect
Means and Ef Term All	fects Se		0.0_0	Cou 447		lean 3.0033			Effect 42.83585
Means and Ef Term All	fects Se		46_0	447			36	Error	
Means and Ef Term All A: Farmer_Villa 1	fects Se		46_0		4		36		
Means and Ef Term All A: Farmer_Villa 1	fects Se		46_0	447	4	3.0033	36 26	Error	42.83585
Means and Ef Term All A: Farmer_Villa 1 2	fects Se		uto_0	447 76 95	4 4 4	3.0033 7.0302 3.3768	36 26 34	Error 1.270653 1.136506	42.83585 3.250376 0.2649587
Means and Ef Term All A: Farmer_Villa 1 2 3	fects Se		46_0	447 76 95 94	4 4 4 4	3.0033 7.0302 3.3768 2.4766	36 26 34 3	Error 1.270653 1.136506 1.142536	42.83585 3.250376 0.2649587 -0.3691246
Means and Ef Term All A: Farmer_Villa 1 2 3 4	fects Se		uto_0	447 76 95 94 92	4 4 4 4 4	3.0033 7.0302 3.3768 2.4766 6.8956	36 26 34 35	Error 1.270653 1.136506 1.142536 1.154888	42.83585 3.250376 0.2649587 -0.3691246 3.916677
Means and Ef Term All A: Farmer_Villa 1 2 3 4 5	fects Se		uto_0	447 76 95 94	4 4 4 4 4	3.0033 7.0302 3.3768 2.4766	36 26 34 35	Error 1.270653 1.136506 1.142536	42.83585 3.250376 0.2649587 -0.3691246
Means and Ef Term All A: Farmer_Villa 1 2 3 4 5 5 B: Variety Flodding 1 Sav	fects Se age vanar sa	ection	uto_0	447 76 95 94 92 90 44	4 4 4 4 3 3	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95	36 26 34 35	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847
Means and Ef Term All A: Farmer_Villa 1 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel	fects Se age vanar sa kyut	ection	uto_0	447 76 95 94 92 90 44 50	4 4 4 4 3 3 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024	36 26 34 35	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153
Means and Ef Term All A: Farmer_Villa 1 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel	fects Se age vanar sa kyut	ection	uto_0	447 76 95 94 92 90 44 50 47	4 4 4 4 3 3 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95	36 26 34 35	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa 1 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8	fects Se age vanar sa kyut 34649.12	ection	uto_0	447 76 95 94 92 90 44 50	4 4 4 4 3 4 4 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024	36 26 34 35 35	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya	fects Se age vanar sa kyut 34649.12	ection	uto_0	447 76 95 94 92 90 44 50 47 43	4 4 4 4 3 3 4 4 4 4 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302	36 26 34 35 35	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa 1 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy	fects Se age vanar sa kyut 34649.12 ar van	ection	uto_0	447 76 95 94 92 90 44 50 47 43 49	4 4 4 4 3 4 4 4 4 5	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816	36 26 34 55 55	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa C S S S Flodding 1 Sav Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungr	fects Se age vanar sa kyut 34649.12 ar van oyan	at-1 295.30	uto_0	447 76 95 94 92 90 44 50 47 43 49 43	4 4 4 4 3 4 4 4 5 5	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790	36 26 34 55 55 19 23 53 57	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa A: Salt 1 Baygya Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan	fects Se age vanar sa kyut 34649.12 ar van oyan	at-1 295.30	46_0	447 76 95 94 92 90 44 50 47 43 49 43 47	4 4 4 4 3 4 4 4 5 5 3	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510	36 26 34 35 55 49 23 33 33 97 96	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa C S S S S S S S S S S S S S S S S S S	fects Se age vanar sa kyut 34649.12 ar van oyan imarsein	at-1 295.30	46_0	447 76 95 94 92 90 44 50 47 43 49 43 47 41	4 4 4 4 3 4 4 4 5 5 3 3 3	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658	36 26 34 35 55 49 23 33 33 77 96 35	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.314993 2.471232 2.363735 2.530788	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan Salt 2 IR-225 Salt 3 Sinthwel	fects Se age vanar sa kyut 34649.12 ar van oyan imarsein latt	at-1 295.30		447 76 95 94 92 90 44 50 47 43 49 43 47 41 44	4 4 4 4 3 4 4 4 5 5 3 3 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.5386	36 26 34 35 55 49 23 33 33 37 06 35 54	Error 1.270653 1.136506 1.142536 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.442988	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan Salt 2 IR-225 Salt 3 Sinthwel Zero Treatmen	fects Se age vanar sa kyut 34649.12 ar van oyan imarsein latt t Pawsa	at-1 295.30		447 76 95 94 92 90 44 50 47 43 49 43 47 41	4 4 4 4 3 4 4 4 5 5 3 3 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658	36 26 34 35 55 49 23 33 33 37 06 35 54	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.314993 2.471232 2.363735 2.530788	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan Salt 2 IR-225 Salt 3 Sinthwel Zero Treatmen AB: Farmer Vi t Height Date3	fects Se age vanar sa kyut 34649.12 ar van oyan imarsein latt t Pawsa llage.Va zero Treatmu	at-1 295.30 n inyin/Na riety	agayar Local 2 Kyarp Loc	447 76 95 94 92 90 44 50 47 43 49 43 47 41 44 39	4 4 4 4 3 4 4 4 5 5 3 3 4 4 4 5 5 3 3 4 4 4 5 5 3 3 4 4 4 5 5 5 3 3 3 4 4 4 5 5 5 5	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.5386 1.3615	36 26 34 55 55 99 23 53 30 7 06 35 54 54 54 54	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.442988 2.594869 adding 1 Sx Flooding	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847 -0.9924024 2 M Flodding 3 IR-84649.1295
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan Salt 1 Pyimyan Salt 2 IR-225 Salt 3 Sinthwel Zero Treatmen AB: Farmer Vint Height_Date3 o Treatment Pawsanyin	fects Se age vanar sa kyut 34649.12 ar van oyan imarsein att t Pawsa llage, Va Zero Treatmu 1 0	ection at-1 295.30 n n nyin/Na riety Local 1 Bayg	agayar Local 2 Kyarr Loc	447 76 95 94 92 90 44 50 47 43 49 43 47 41 44 39	4 4 4 4 3 4 4 4 4 5 5 3 3 3 4 4 5 5 3 3 4 4 4 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.5386 1.3615	36 26 34 55 55 49 23 33 37 06 35 54 54 54	Error 1.270653 1.136506 1.142536 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.42988 2.594869 Moding 1 Sv Floodding	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847 -0.9924024 ************************************
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan Salt 2 IR-225 Salt 3 Sinthwel Zero Treatmen AB: Farmer Vi a Treatment Pawsanyin al 1 Baygyar	fects Se age vanar sa kyut 34649.12 ar van oyan imarsein latt t Pawsa llage.Va zero Treatmu	at-1 295.30 n inyin/Na riety	agayar Local 2 Kyarp Loc	447 76 95 94 92 90 44 50 47 43 49 43 47 41 44 39	4 4 4 4 3 4 4 4 4 5 5 3 3 4 4 4 5 5 3 3 4 4 4 15	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.5386 1.3615	36 26 34 55 55 99 23 53 30 7 06 35 54 54 54 54	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.442988 2.594869 adding 1 Sx Flooding	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847 -0.9924024 2 M Flodding 3 IR-84649.1295
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa C S B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan Salt 2 IR-225 Salt 3 Sinthwel Zero Treatmen AB: Farmer Vi nt_Height_Date3 o Treatment Pawsanyin al 1 Baygyar al 2 Kyapyan al 3 Taungpyan	fects Se age vanar sa kyut 34649.12 ar van oyan imarsein latt t Pawsa llage, Va Zero Treatme l 0 1 1 16	at-1 295.30 n nunyin/Na riety Local 1 Bayg 1 0 1 0	agayar Local 2 Kyarp Loc 16 15 0 5	447 76 95 94 92 90 44 50 47 43 49 43 47 41 44 39 *********************************	4 4 4 4 4 3 3 4 4 4 5 5 3 3 3 4 4 4 5 5 3 3 4 4 4 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.5386 1.3615 13 13 14 29 24	36 26 34 55 55 23 53 23 53 23 55 54 54 54 54 54 54 54 55 54 54 54 55	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.442988 2.594869 adding 1 Sv Flodding 2 3 13	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847 -0.9924024 2 M Flodding 3 IR-84649.1295 6 6 7 5 2 10 17 5
Means and Ef Term All A: Farmer_Villa A: Farmer_Villa A: Farmer_Villa C S S S S S S S S S S S S S S S S S S	fects Se age vanar sa kyut 34649.12 ar van byan imarsein att t Pawsa llage.Va Zero Treatmu 1 0 1 1 16 1 11	at-1 295.30 n nunyin/Na riety Local 1 Bayg 1 0 15 15 10 15	agayar Local 2 Kyarr Loc 16 15 0 5 30	447 76 95 94 92 90 44 50 47 43 49 43 47 41 44 39 *********************************	4 4 4 4 4 3 3 4 4 4 5 5 3 3 4 4 5 5 3 3 4 4 4 5 5 3 3 4 4 4 5 5 3 3 4 4 4 5 5 3 3 4 4 4 5 5 3 3 4 4 5 5 5 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.3790 7.0510 6.2658 0.5386 1.3615 ±2 IR-117.5 13 14 29 24	36 26 34 55 55 23 33 35 35 35 35 35 34 54 54 54 54	Error 1.270653 1.136506 1.142536 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.442988 2.594869 adding 1 Sx Floodding 2 3 13 12	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847 -0.9924024 22 M Flodding 3 IR-84649.1295. 6 7 5 8 20
Means and Ef Term All A: Farmer_Villa 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan Salt 2 IR-225 Salt 3 Sinthwel Zero Treatmen AB: Farmer Vi nt_Height_Date3 o Treatment Pawsanyin tal 1 Baygyar al 3 Taungpyan tal 2 Kyarpyan tal 3 Taungpyan tal 2 Kyarpyan	fects Se age vanar sa kyut 34649.12 ar van oyan imarsein latt t Pawsa llage, Va Zero Treatme l 0 1 1 16	at-1 295.30 n nunyin/Na riety Local 1 Bayg 1 0 1 0	agayar Local 2 Kyarr Loc 16 15 0 5	447 76 95 94 92 90 44 50 47 43 49 43 47 41 44 39 *********************************	4 4 4 4 4 3 3 4 4 4 4 4 5 5 3 3 3 4 4 4 5 5 3 3 3 4 4 4 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.5386 1.3615 13 13 14 29 24	36 26 34 55 55 23 53 23 53 23 55 54 54 54 54 54 54 54 55 54 54 54 55	Error 1.270653 1.136506 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.442988 2.594869 adding 1 Sv Flodding 2 3 13	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847 -0.9924024 2 M Flodding 3 IR-84649.1295. 6 6 7 5 2 10 17 5
Means and Ef Term All A: Farmer_Villa 1 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel Flodding 2 Mel Flodding 3 IR-8 Local 1 Baygya Local 2 Kyarpy Local 3 Taungp Salt 1 Pyimyan Salt 2 IR-225 Salt 3 Sinthwel Zero Treatmen AB: Farmer Vi nt_Height_Date3 to Treatment Pawsanyin cal 3 Taungpyan t1 Pyimyanmarsein t 2 IR-11T225 t 3 Sinthwelatt dding 1 Swarna Sub-1	fects Se age vanar sa cyut 34649.12 ar van oyan imarsein att t Pawsa llage, Va Zero Treatm (0 1 1 1 1 1 1 4 2	at-1 295.30 n nuyin/Na riety Local 1 Bayg 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	agayar Local 2 Kyarr Loc 16 15 0 5 30 29 20 18	447 76 95 94 92 90 44 50 47 43 49 43 47 41 44 39 *********************************	4 4 4 4 4 3 3 4 4 4 5 5 3 3 4 4 4 5 5 3 3 3 4 4 4 4	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.3786 1.3615	36 26 34 55 55 19 23 53 30 7 06 35 54 54 54 54 54 51 10 9 0 20 15 10 9 9 0 2	Error 1.270653 1.136506 1.142536 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.442988 2.594869 mdding 1 Sv Flodding 2 3 18 13 12 11 2 0	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847 -0.9924024 2 M Flodding 3 IR-84649.1295 6 6 7 5 8 20 7 19 2 10 4 8
Means and Ef Term All A: Farmer_Villa 1 2 3 4 5 B: Variety Flodding 1 Sav Flodding 2 Mel	fects Se age vanar sa kyut 34649.12 ar van byan imarsein lage,Va Zero Treatmi I 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	at-1 295.30 n n Local 1 Baygy Local 1 Baygy 1 0 15 10 15 10 15 14 4	agayar Local 2 Kyarr Loc 16 15 0 5 30 29 20 18 22	447 76 95 94 92 90 44 50 47 43 49 43 47 41 44 39 *********************************	4 4 4 4 4 3 3 4 4 4 4 5 5 3 3 3 4 4 4 5 5 3 3 3 4 4 4 5 5 3 3 3 4 4 4 5 5 3 3 3 4 4 4 5 5 5 3 3 3 4 4 4 5 5 5 3 3 3 4 4 5 5 5 1 6 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	3.0033 7.0302 3.3768 2.4766 6.8956 5.78 0.95 5.024 4.7914 1.7302 0.5816 0.3790 7.0510 6.2658 0.5386 1.3615 1.3615	36 26 34 55 55 19 23 33 55 54 54 5 54 5 54 5 20 15 10 9 0	Error 1.270653 1.136506 1.142536 1.142536 1.154888 1.167649 2.442988 2.291726 2.363735 2.471232 2.314993 2.471232 2.363735 2.530788 2.442988 2.594869 mdding 1 Sx Flodding 2 3 18 13 12 11 2	42.83585 3.250376 0.2649587 -0.3691246 3.916677 -7.062887 -1.185847 2.188153 1.970542 -1.070014 7.502598 6.352344 -5.882791 -6.268736 -2.613847 -0.9924024 2 M Flodding 3 IR-84649.1295. 6 6 7 5 8 20 7 19 2 10

Date 3:

			Analysis of V	ariance Repo	rt	
Page/Date/Time	1 07.10.	2017 11:54:1	15			
Database	Z:\Users\E	Benjamin\Do	cuments\ ial\PI	H+T+LC-Data-	Boyargyi.S0	
Response	Height_Da	ate4	100 C	2 3 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	100000	
Analysis of Varian	nce Table					
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05
A: Farmer_Village	4	7041.216	1760.304	16.09	0.000000*	
B: Variety	9	10069.08	1118.787	4.77	0.000327*	0.994580
AB	36	8450.286	234.7302	2.15	0.000223*	
S	396	43320.39	109.3949			
Total (Adjusted)	445	69213.97				
Total	446					
Friedman Test S		edman		Prob	Conce	ordance
Ties	(Q)		DF	Level	(W)	, addited
Ignored		352727	9	0.007826	0.4967	727
Correction		352727	9	0.007826	0.4967	
Multiplicity	0					
			Analysis o	of Variance R	eport	
Page/Date/Time Database Response			:15 ocuments\ ial	\PH+T+LC-D	ata-Boyargy	yi.S0
Means and Effects	- 257	0104				
				5	Standard	

								Standard		
Term				Count	M	ean		Error		Effect
All				446	44	.91637				44.83088
A: Farmer_Villa	ana			110						11.00000
	age			96	47	.82442		1.127845		2,707898
1				86						
2				98	46	6.78878		1.056539)	1.893009
3				81	47	.51605		1.162134	1.2	2.926826
4				94		6383		1.078784		0.3954532
5				87		6.73219		1.121344		-7.923186
				07	00	0.15215		1.121044		-1.323100
B: Variety		6 A		200	1.0	200		1.15.16		1.
Flodding 1 Sav	vanar sat-1			48	40	.68542		2.211382		-4.349102
Flodding 2 Mel	kyut			44	47	.88864		2.309713	3	2.892215
Flodding 3 IR-8		5.30		49		5.57143		2.188701		0.6131198
Local 1 Baygya		0.00		45		6.04889		2.283906		1.109231
						1 T T T T T				
Local 2 Kyarpy				43		.9907		2.336416		10.80212
Local 3 Taungp	oyan			45	50	0.19778		2.283906	5	4.137786
Salt 1 Pyimyan	marsein			47	38	3.56383		2.234784		-6.335547
Salt 2 IR-225				39	39	.50256		2.453308		-5.020952
Salt 3 Sinthwel	att			49		.60408		2.188701		-2.287325
Zero Treatmen			iyar	37	43	3.33243		2.518741		-1.561547
AD. Earmor Vi					Distance Call	2 ID 417 Cale 2	et de la compañía de	Labora e Plad		
Plant_Height_Date4 Sero Treatment Pawsanyin	Zero Treatmi Loca 0	10 1 Baygy Loca	2 Kyarr Lo 22	cal 3 Tauni Salt 1 10	12	10 10 10 10 10 10 10 10	Sinthw P	lodding 1 SV Flad	aing 2 (V) F 9	lodding 3 IR-84649.1295. 5
ocal 1 Baygyar	10	0	12	0	22	20	12	17	1	S
ocal 2 Kyarpyan	22	12	0	12	34	32	24	29	13	17
ocal 3 Taungpyan	10	0	12	0	22	20	12	17	1	5
alt 1 Pyimyanmarsein	12	22	34	22	0	2	10	5	21	17
alt 2 IR-11T225	10	20	32	20	2	0	8	3	19	15
alt 3 Sinthwelatt	2	12	24	12	10	В	0	5	11	7
lodding 1 Swarna Sub-1	7	17	29	17	5	з	5	0	16	12
lodding 2 Mekyut	9	1	13	1	21	19	11	16	0	4
Flodding 3 IR-84649.1295.30	5	5	17	5	17	15	7	12	4	0

Date 5:

Analysis of Variance Report 1 07.10.2017 12:03:41 Page/Date/Time Database Z:\Users\Benjamin\Documents\ ... ial\PH+T+LC-Data-Boyargyi.S0 Response Height Date5 Analysis of Variance Table Source Sum of Mean Prob Power DF Squares **F-Ratio** Term Square Level (Alpha=0.05) A: Farmer_Village 4 6597.187 1649.297 19.19 0.000000* B: Variety 9 0.000000* 1.000000 10996.49 1221.832 10.38 AB 36 4237.641 117.7122 1.37 0.080534 S 404 34725.49 85.95418 Total (Adjusted) 453 59402.18 Total 454 * Term significant at alpha = 0.05 **Friedman Test Section** Friedman Prob Concordance Ties (Q) DF Level (W) Ignored 33.392727 9 0.000114 0.742061 Correction 33.392727 9 0.000114 0.742061 Multiplicity 0 Analysis of Variance Report Page/Date/Time 2 07.10.2017 12:03:41 Database Z:\Users\Benjamin\Documents\ ... ial\PH+T+LC-Data-Boyargyi.S0 Response Height Date5 **Means and Effects Section** Standard Term Count Mean Error Effect

Term				Jount	INICC					IICOL	
All			4	154	49.3	31211			4	9.41179	
A: Farmer Villa	ae										
1	3-		ç	92	52.2	26739	0.9	66584	2	.88666	
2				99		4848		317854		0.233673	
3				31		4568		30128		6.264025	
3				2.2				1. C. 1. C. 1. C. 1.	7		
4			5	92	47.1	4891	0.9	66584		1.505117	
5			9	90	42.9	0889	0.9	772648	-	6.411895	
B: Variety											
Flodding 1 Saw	anar sat-1		4	17	46.7	4255	1.5	82566	_	3.020006	
Flodding 2 Mek			4	15	51.8	32889	1.6	17352	3	3.115549	
Flodding 3 IR-8		.30		18		3125		65994		.203327	
Local 1 Baygya		5		18		68542		65994		.1835492	
Local 2 Kyarpya			4	18		1875		65994		.622661	
Local 3 Taungp				11		1707		94412		6.132883	
Salt 1 Pyimyani				18		33541		65994		7.349784	
Salt 2 IR-225	naroom			16		37391		99676		7.329117	
Salt 3 Sinthwela	att			15		33333		17352		2.587054	
Zero Treatment		n/Magan		38		6316		60026		.799365E	02
			al	00	40.	10310	1.7	00020	4	.199303E	-02
AB: Farmer_Vil						0000		00393			
Plant Height Date5			2 Kyarr Loca			and the second se				odding 3 IR-84649	1295 30
Zero Treatment Pawsanyin	0	3	22	17	17	14	5	9	12	6	.1200.00
Local 1 Baygyar	3	0	19	14	20	17	8	12	9	3	
Local 2 Kyarpyan	22	19	0	5	39	36	27	31	10	16	
Local 3 Taungpyan	17	14	5	0	34	31	22	26	5	11	
Salt 1 Pyimyanmarsein	17	20	39	34	0	3	12	8	29	23	
Salt 2 IR-11T225	14	17	36	.31	3	0	9	5	26	20	
Salt 3 Sinthwelatt	5	8	27	22	12	9	0	-4	17	11	
Flodding 1 Swarna Sub-1	9	12	31	26	8	5	4	0	21	15	
Flodding 2 Mekyut	12	9	10	5	29	26	17	21	0	6	
Flodding 3 IR-84649.1295.30	6	3	16	11	23	20	11	15	6	0	

Date 6:

Dale 0.		۵	nalysis of Va	riance Reno	rt	
Page/Date/Time	1 07.10.20	17 12:18:45		nanoc nepe		
Database	Z:\Users\Ber	njamin\Docume	nts\ jal\PH+	T+LC-Data-	Boyargyi.S0	
Response	Height_Date	6				
Analysis of Varian	nce Table					
Source		Sum of	Mean		Prob	Power
Term		Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Farmer_Village		7369.402	1842.351	27.97	0.000000*	
B: Variety		16852.88	1872.542	14.32		1.000000
AB		4708.109	130.7808	1.99	0.000814*	
S		29176.33	65.8608			
Total (Adjusted)	492 493	58467.63				
Total * Term significant a						
Friedman Test Sect	ion Friedma		D	ob	Concor	danaa
Ties	(Q)	DF		vel	(W)	ualice
	36,36000					0
Ignored	79 299 70 71 7 71 7			000034	0.80800	
Correction	36.36000	9 00	0.0	000034	0.80800	0
Multiplicity	0					
			nalysis of V	ariance R	anort	
Page/Date/Time 2	07 10 201	7 12:18:45	analysis of a	anance it	cport	
		jamin\Docume	ents ial/Pl	H+T+I C-D	ata-Boyaro	1 50
	leight Date			111120-04	ata-Doyargy	1.00
Перринас	leight_Dated					
Means and Effects S	Section					
2					tandard	1000
Term		Count			rror	Effect
All		493	51.436	92		51.41432
A: Farmer_Village						Charles Service
1		96	53.194		.8282813	1.579461
2		100	50.318		.8115467	-1.096317
3		100	57.643		.8115467	6.228683
4		97	50.229	9 0	.8240008	-1.130511
5		100	45.833	0	.8115467	-5.581316
B: Variety						
Flodding 1 Sawanar s	sat-1	50	47.156	1	.617287	-4.258317
Flodding 2 Mekyut		50	54.244	1	.617287	2.829683
Flodding 3 IR-84649.	1295.30	50	50.85	1	.617287	-0.5643167
Local 1 Baygyar		49	52.802	04 1	.633706	1.360794
Local 2 Kyarpyan		50	61.838		.617287	10.42368
Local 3 Taungpyan		48	57.777		.650636	6.144183
Salt 1 Pyimyanmarse	in	50	41.882		.617287	-9.532316
Salt 2 IR-225		48	43.839		.650636	-7.520317
Salt 3 Sinthwelatt		49	48.863		.633706	-2.597206
Zero Treatment Paws	anvin/Naga		55.116		.633706	3.714128
AB: Former Village V		43	55.110	00 1	.000100	0.1 14120

Zero Treatment Pawsanyin/Nagayar

Plant_Height_Date6	Zero Treatmi L	ocal 1 Baygy Loc	al 2 Kyarp Loc	al 3 Tauni Salt	1 Pyimya Salt	2 IR-11T. Salt	3 Sinthw Floo	iding 1 Sv Floo	ding 2 M Floo	Iding 3 IR-8464	19.1295,30
Zero Treatment Pawsanyin	0	6	12	4	30	27	14	20	2	12	
Local 1 Baygyar	6	0	18	10	24	21	8	14	4	6	
Local 2 Kyarpyan	12	18	0	8	42	39	26	32	14	-24	
Local 3 Taungpyan	4	10	8	0	34	31	18	24	6	16	
Salt 1 Pyimyanmarsein	30	24	42	34	0	3	16	10	28	18	
Salt 2 IR-11T225	27	21	39	31	3	0	13	7	25	15	
Salt 3 Sinthwelatt	14	8	26	18	16	13	0	6	12	2	
Flodding 1 Swarna Sub-1	20	14	32	24	10	7	6	0	18	8	
Flodding 2 Mekyut	2	4	14	6	28	25	12	18	0	10	
Flodding 3 IR-84649,1295.30	0 12	6	24	16	18	15	2	8	10	0	

	4.42.53.200		alysis of Var	riance Repo	rt	
Page/Date/Time		7 12:22:54				
Database		amin\Document	s\ ial\PH+	T+LC-Data-	Boyargyi.S0	
Response	Height_Date7					
Analysis of Varian	ice Table					
Source			lean		Prob	Power
Term			Square	F-Ratio	Level	(Alpha=0.05)
A: Farmer_Village			192.908	18.26		
B: Variety			494.184	18.31		1.000000
AB			36.234	2.08	0.000344*	
S			5.34143			
Total (Adjusted)		1227.45				
Total * Term significant a	496 t alpha = 0.05					
Friedman Test Sect				9	620.00	
2007 Barris Contra	Friedman			ob	Concor	dance
Ties	(Q)	DF		vel	(W)	2
Ignored	37.01454	74 J.T		000026	0.82254	
Correction	37.01454	59	0.0	000026	0.82254	5
Multiplicity	0					
Database 2	Z:\Users\Benj	7 12:22:54 amin\Documer	St. 14	/ariance Ro H+T+LC-Da		/i.S0
Database Z Response H	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer	St. 14			<i>r</i> i.S0
Database 2	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer	St. 14	H+T+LC-Da	ata-Boyargy	vi.S0
Database 2 Response H Means and Effects	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer	nts\ ial\Pl	H+T+LC-Da	ata-Boyargy tandard	
Database 2 Response H Means and Effects S Term	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer Count	nts\ ial\Pl Mean	H+T+LC-Da S E	ata-Boyargy	Effect
Database 2 Response H Means and Effects S Term All	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer	nts\ ial\Pl	H+T+LC-Da S E	ata-Boyargy tandard	
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer Count 496	nts\ ial\Pl Mean 55.901	H+T+LC-Da S E 01	ata-Boyargy tandard rror	Effect 55.88878
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer Count 496 99	nts\ ial\Pl Mean 55.901 54.036	H+T+LC-Da S E 01 337 0.	ata-Boyargy tandard rror .8124127	Effect 55.88878 -1.974333
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer Count 496 99 100	Mean 55.901 54.036 53.416	H+T+LC-Da S 01 337 0. 5 0.	tandard rror .8124127 .8083405	Effect 55.88878 -1.974333 -2.472778
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer Count 496 99 100 99	Mean 55.901 54.036 53.416 60.877	H+T+LC-Da S 01 37 0. 5 0. 78 0.	ata-Boyargy tandard rror .8124127 .8083405 .8124127	Effect 55.88878 -1.974333 -2.472778 4.886778
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3 4	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer 496 99 100 99 98	Mean 55.901 54.036 53.416 60.877 58.243	H+T+LC-Da S 01 37 0. 5 0. 78 0. 88 0.	ata-Boyargy tandard rror .8124127 .8083405 .8124127 .8165472	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111
Database 2 Response 4 Means and Effects 3 Term All A: Farmer_Village 1 2 3 4 5	Z:\Users\Benj Height_Date7	7 12:22:54 amin\Documer Count 496 99 100 99	Mean 55.901 54.036 53.416 60.877	H+T+LC-Da S 01 37 0. 5 0. 78 0. 88 0.	ata-Boyargy tandard rror .8124127 .8083405 .8124127	Effect 55.88878 -1.974333 -2.472778 4.886778
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3 4 5 B: Variety	Z:\Users\Benj Height_Date7 Section	7 12:22:54 amin\Documer 496 99 100 99 98 100	Mean 55.901 54.036 53.416 60.877 58.243 53.009	H+T+LC-Da S 01 37 0 78 0 88 0 0	tandard rror .8124127 .8083405 .8124127 .8165472 .8083405	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3 4 5 5 B: Variety Flodding 1 Sawanar	Z:\Users\Benj Height_Date7 Section	7 12:22:54 amin\Documer 496 99 100 99 98 100 50	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09	H+T+LC-Da E 01 337 0. 337 0. 337 0. 337 0. 337 0. 337 0. 337 0. 348 0. 350	tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .8083405	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawanar 9 Flodding 2 Mekyut	Z:\Users\Benj Height_Date7 Section sat-1	7 12:22:54 amin\Documer 496 99 100 99 98 100 50 50	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09 56.872	H+T+LC-Da E 01 337 0. 337 0. 337 0. 337 0. 337 0. 337 0. 337 0. 14 337 0. 337 0. 348 0.	tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .650661 .650661	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778 0.9832222
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawanar 9 Flodding 2 Mekyut Flodding 3 IR-84649.	Z:\Users\Benj Height_Date7 Section sat-1	7 12:22:54 amin\Documer 496 99 100 99 98 100 50 50 50	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09 56.872 54.418	H+T+LC-Da E 01 337 0. 337 0. 337 0. 337 0. 337 0. 348 0. 358 0. 368 0. 378 0. 378 0. 378 0. 378 0. 379 0. 370 0. 370 0. 371 0. 371 0. 371 0. 371 0. 371 0. 372 0. 373 0. 373 0. 374 0. 374 0. 375 0. 376 0. 377 0. 378	tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .650661 .650661 .650661	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778 0.9832222 -1.470778
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawanar 9 Flodding 2 Mekyut Flodding 3 IR-84649 Local 1 Baygyar	Z:\Users\Benj Height_Date7 Section sat-1	7 12:22:54 amin\Documer 496 99 100 99 98 100 50 50 50 50 49	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09 56.872 54.418 61.389	H+T+LC-Da E 01 337 0. 337 0. 337 0. 337 0. 337 0. 348 0. 0 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .650661 .650661 .650661 .650661 .650661 .650661	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778 0.9832222 -1.470778 5.572333
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawanar 9 Flodding 2 Mekyut Flodding 3 IR-84649. Local 1 Baygyar Local 2 Kyarpyan	Z:\Users\Benj Height_Date7 Section sat-1	7 12:22:54 amin\Documer 496 99 100 99 98 100 50 50 50 50 49 50	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09 56.872 54.418 61.389 65.5	H+T+LC-Da E 01 37 0, 78 0, 78 0, 78 0, 1, 88 1, 8 1, 8 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ata-Boyargy tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .650661 .650661 .650661 .650661 .650661 .650661	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778 0.9832222 -1.470778 5.572333 9.611222
Database 2 Response 4 Means and Effects 9 Term All A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawanar 9 Flodding 2 Mekyut Flodding 3 IR-84649. Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyan	Z:\Users\Benj Height_Date7 Section sat-1 .1295.30	7 12:22:54 amin\Documen 496 99 100 99 98 100 50 50 50 49 50 50 50 50 50	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09 56.872 54.418 61.389 65.5 63.814	H+T+LC-Da E 01 37 0, 37 0, 78 0, 78 0, 78 0, 78 0, 78 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	ata-Boyargy tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778 0.9832222 -1.470778 5.572333 9.611222 7.925222
Database 2 Response 4 Means and Effects 4 Term All A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawanar 4 Flodding 2 Mekyut Flodding 3 IR-84649. Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyan Salt 1 Pyimyanmarse	Z:\Users\Benj Height_Date7 Section sat-1 .1295.30	7 12:22:54 amin\Documen 496 99 100 99 98 100 50 50 50 49 50 50 49 50 50 49	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09 56.872 54.418 61.389 65.5 63.814 45.306	H+T+LC-Da 5 01 37 0 37 0 78 0 78 0 78 0 1 1 1 1 1 1 1 1 1 1 1 1 1	ata-Boyargy tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778 0.9832222 -1.470778 5.572333 9.611222 7.925222 -10.47567
Database 2 Response 4 Means and Effects 3 Term All A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawanar Flodding 2 Mekyut Flodding 3 IR-84649. Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyan Salt 1 Pyimyanmarse Salt 2 IR-225	Z:\Users\Benj Height_Date7 Section sat-1 .1295.30	7 12:22:54 amin\Documen 496 99 100 99 98 100 50 50 50 49 50 50 49 50 50 49 50 50 49	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09 56.872 54.418 61.389 65.5 63.814 45.306 45.608	H+T+LC-Da 5 01 37 0 78 0 78 0 78 0 1 88 1 1 1 1 1 1 1 1 1 1 1 1 1	tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .667419 .650661	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778 0.9832222 -1.470778 5.572333 9.611222 7.925222 -10.47567 -10.35589
Database 2 Response 4 Means and Effects 3 Term All A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawanar Flodding 2 Mekyut Flodding 3 IR-84649. Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyan Salt 1 Pyimyanmarse	Z:\Users\Benj Height_Date7 Section sat-1 .1295.30	7 12:22:54 amin\Documer 496 99 100 99 98 100 50 50 50 50 49 50 50 49 50 50 49 50	Mean 55.901 54.036 53.416 60.877 58.243 53.009 51.09 56.872 54.418 61.389 65.5 63.814 45.306	H+T+LC-Da E 01 37 0, 78 0, 78 0, 78 0, 78 0, 78 0, 1, 88 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ata-Boyargy tandard rror .8124127 .8083405 .8124127 .8165472 .8083405 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661 .650661	Effect 55.88878 -1.974333 -2.472778 4.886778 2.440111 -2.879778 -4.798778 0.9832222 -1.470778 5.572333 9.611222 7.925222 -10.47567

Date 7:

Zero Treatm Local 1 Baygy Local 2 Kyarg Local 3 Tauni Salt 1 Pyimya Salt 2 IR-11T: Salt 3 Sinthw Flodding 1 Sy Flodding 2 M Flodding 3 IR-84649.1295.30 Plant_Height_Date7 Zero Treatment Pawsanyin Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyan Salt 1 Pylmyanmarsein Salt 2 IR-11T225 Salt 3 Sinthwelatt Flodding 1 Swarna Sub-1 Flodding 2 Mekyut Flodding 3 IR-84649.1295.30 22 7 7

Date 8:

Juic 0.					nalysis of V	Varian	Den Dene	-	_	
Page/Date/T Database			2017 12 Benjamir	:27:18	nts\ ial\P				50	
Response		eight_Da								
Analysis of	Variance	Table		1.				10.12		later a second
Source			Sum		Mean			Prob		ower
Term		DF	Squa	res	Square		F-Ratio	Level	()	Alpha=0.05)
A: Farmer_V	illage	4	6847.	004	1711.751		17.56	0.000000)*	
B: Variety		9	21359	9.96	2373.329		12.64	0.000000)* 1	.000000
AB		36	6758.	059	187.7239		1.93	0.001343		
S		449	43777		97.50047					
Total (Adjust	ed)	498	78661							
Total		499	1000							
* Term signifi	icant at al		05							
Friedman Tes	t Sectio	n Fried	man			Prot		Conc	ord	ance
Ties		(Q)		DF		Leve		(W)		
			0000						070	
Ignored		34.96		9			0060	0.776		
Correction		34.96	3636	9		0.00	0060	0.776	i970	
Multiplicity		0								
Means and Eff	ects Sec	ction					Sta	andard		
Term				Count	Mear			ror		Effect
All				499	64.75					64.73364
				499	04.75	0092			- 0	04.73304
A: Farmer_Villa	ige									
1				99	61.52			923977		-3.300422
2				100	62.05	54	0.9	874232		-2.679644
3				100	68.88	39	0.9	874232		4.155355
4				100	69.62	22	0.9	874232		4.888356
5				100	61.67	7	0.9	874232		-3.063644
B: Variety										
Flodding 1 Saw	anar cat	4		50	60.60	16	10	37647		-4.127645
		-								
Flodding 2 Mek		05 00		50	64.03			37647		-0.7036445
Flodding 3 IR-8		95.30		50	62.97			37647		-1.759644
Local 1 Baygya				50	70.49			37647		5.758356
Local 2 Kyarpy	an			50	74.02	26	1.9	37647	1	9.292356
Local 3 Taungp				50	71.63	34		37647		6.900355
Salt 1 Pyimyan				50	53.66			37647		-11.07164
Salt 2 IR-225				49	55.25			57319		-9.5392
Salt 3 Sinthwel				50	64.80			37647		7.235555E-02
		in /hla								
Zero Treatment AB: Farmer_Vil			ayar	50	69.91	12	1.8	37647		5.178356
ant_Height_Date8		Local 1 Bayg	the second s		the state of the s		alt 3 Sinthw Flo	dding 1 Sv Flodd	ing 2 M	Flodding 3 IR-84649.129
ero Treatment Pawsanyin	0	5	13	8	27	25	6	13	8	12
ical 1 Baygyar	5	0	8	3	32	30	11	18	13	17
ocal 2 Kyarpyan ocal 3 Taungpyan	13	8	0	5	40	38	19	26	16	25
lt 1 Pylmyanmarsein	27	32	40	35	0	2	21	14	19	15
	25	30	38	33	2	0	19	12	17	13
	6	11	19	14	21	19	0	7	2	6
alt 3 Sinthwelatt										
alt 2 IR-11T225 alt 3 Sinthwelatt lodding 1 Swarna Sub-1 lodding 2 Mekyut	13	18 13	26	21	14	12	7	0	5	4

Date	a٠
Date	9.

ate J.				٨	alveie of	Varian	co Por	ort		
Page/Date/Time Database Response	Z:\Us			:08	nalysis of nts\ ial\F				/i.S0	
Response	They	it_Dai								
Analysis of Va	riance Tal	ble								
Source			Sum of		Mean			Prob		Power
Term	0	DF	Squares		Square		F-Ratio	b Level		(Alpha=0.05)
A: Farmer_Villa	ge 4		13963.25	5	3490.813		40.5			
B: Variety	9		26174.09)	2908.232		12.2		2000*	1.000000
AB	3	6	8567.155	5	237.9765		2.7	7 0.0000	001*	
S	4	48	38529.45	5	86.00323					
Total (Adjusted)		97	87412.98	3						
Total		98								
* Term significat	nt at alpha	a = 0.0	5							
T	ka Pastia	4								
Friedman Tes	t Section	1								
	2 de cardo		dman			Pro	b	Co	oncor	dance
Ties		(Q)		DF		Lev		(W		
Ignored			69091	9			00053		78375	58
Correction			69091	9			00053		78375	
Concolon		00.2	00001	0		0.00		0.1	0010	
Multiplicity		0								
leans and Effe	ects Sect	ion								
								Standar	d	
erm				Coun	t Me	an		Error		Effect
JI				498		12249		1.11.1		78.11775
Farmer Villag	ae			122		122.3				0.000
				100	77.	53		0.92737	93	-0.5877556
				99		79495		0.93205		1.607022
				100		816		0.92737		8.698244
				100		947		0.92737		-2.170756
				99		46465		0.93205		-7.546756
: Variety				35	10.	40400		0.93205	12	-1.040700
	anor oot '			50	74	02		2 10162	5	6 197756
lodding 1 Saw				50	71.			2.18163		-6.187756
lodding 2 Meky		- 00		50		086		2.18163		2.968245
lodding 3 IR-84	4049.129	5.30		49		90816		2.20378		-3.2522
ocal 1 Baygyar				49		57959		2.20378		6.392244
ocal 2 Kyarpya				50		068		2.18163		8.950245
ocal 3 Taungpy				50		804		2.18163		6.686244
alt 1 Pyimyann	narsein			50		586		2.18163		-13.53176
alt 2 IR-225				50		882		2.18163		-9.235756
Salt 3 Sinthwela				50		716		2.18163		1.598244
ero Treatment	Pawsany	in/Na	gayar	50	83.	73		2.18163	5	5.612245
_Height_Date9	Zero Treatme Loo	al 1 Baygy	Local 2 Kyarp Loc	cal 3 Tauni S	ialt 1 Pyimya Salt	2 IR-11T. Sa	t 3 Sinthw	Flodding 1 Sv Flo	dding 2 M	Flodding 3 IR-84649.1295.3
Treatment Pawsanyin	0	1	4	3	34	29	12	24	6	20
1 Baygyar 2 Kyarpyan	1 4	0	5	2	33 38	28	11	23	5	
3 Taungpyan	- 3	2	7	0	30	26	9	20	3	
Pyimyanmarsein	34	33	.38	31	0	5	22	10	28	14
IR-11T225 Sinthwelatt	29	28	33	26 9	5	0	17	5	23	
ling 1 Swarna Sub-1	24	23	28	21	10	5	12	0	18	
oding 2 Mekyut	6	5	10	3	28	23	6	18	0	
odding 3 IR-84649.1295.30	20	19	24	17	14	9	8	4	14	0

			Analys	is of Va	riance Repo	ort	
Page/Date/Time	1 07.10	0.2017 12:39					
Database		Benjamin\Do		ial\PH-	+T+I C-Data-	Boyarovi SO	
Response	Height_E		Journerite		- T-LO Dala	Doyargyi.co	
Analysis of Varia							
Analysis of Varia Source	ice lable	Sum of	Mea	<u>.</u>		Prob	Power
	DE				E Dette		
Term	DF	Squares	Squa		F-Ratio	Level	(Alpha=0.05)
A: Farmer_Village	4	26306.46		5.615	57.33		
B: Variety	9	27309.13		1.347	11.24		1.000000
AB	36	9715.516	269.	8755	2.35	0.000030*	
S	449	51511.28	114.	7244			
Total (Adjusted)	498	114922.6					
Total	499						
* Term significant a	at alpha = (0.05					
Friedman Test	Section						
		Friedman			Prob	Conc	ordance
Ties		(Q)	DF		Level	(W)	
Ignored		33.174545	9		0.000125	0.737	212
Correction		33.174545	9		0.000125	0.737	
Conection		00.174040	9		0.000123	0.737	212
Multiplicity	(0					
			Ana	alvsis o	of Variance	Report	
Page/Date/Time	2 07	.10.2017 12					
Database		ers\Benjamin		ts\ ial	PH+T+I C-I	Data-Bovar	vi S0
Response		t Date10				e and boyding	
Tooponoo	noigh	_baloit					
Means and Effe	cts Sectio	on				1.1.1.1	
	cts Section	on	Count	Mea	an	Standard	Effect
Term	cts Section	on	Count	Mea		Standard Error	Effect
Term All		on	Count 499		an 9974		Effect 84.98182
Term All A: Farmer_Villag		on	499	84.9	9974	Error	84.98182
Term All A: Farmer_Villag 1		on	499 100	84.9 83.8	9974 386	Error 1.071095	84.98182 -1.095822
Term All A: Farmer_Villag 1 2		on	499 100 100	84.9 83.8 89.4	9974 886 112	Error 1.071095 1.071095	84.98182 -1.095822 4.430178
Term All A: Farmer_Villag 1 2		on	499 100	84.9 83.8	9974 886 112	Error 1.071095	84.98182 -1.095822
Term All A: Farmer_Villag 1 2 3		on	499 100 100	84.9 83.8 89.4 96.0	9974 886 112	Error 1.071095 1.071095	84.98182 -1.095822 4.430178 11.08318
Term All A: Farmer_Villag 1 2 3 4		on	499 100 100 100 99	84.9 83.8 89.4 96.0 80.6	9974 386 412 065 6404	Error 1.071095 1.071095 1.071095 1.076491	84.98182 -1.095822 4.430178 11.08318 -4.375711
Term All A: Farmer_Villag 1 2 3 4 5		on	499 100 100 100	84.9 83.8 89.4 96.0	9974 386 412 065 6404	Error 1.071095 1.071095 1.071095	84.98182 -1.095822 4.430178 11.08318
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety	e	on	499 100 100 100 99 100	84.9 83.8 89.4 96.0 80.6 74.9	9974 886 412 965 5404 94	Error 1.071095 1.071095 1.071095 1.076491 1.071095	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa	e nar sat-1	on	499 100 100 99 100 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2	9974 386 412 065 5404 94 224	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky	e nar sat-1 ut		499 100 100 99 100 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1	9974 386 412 065 5404 94 224 13	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84	e nar sat-1 ut		499 100 100 99 100 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4	9974 386 412 065 5404 94 224 13 412	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky	e nar sat-1 ut		499 100 100 99 100 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1	9974 386 412 065 5404 94 224 13 412	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar	e nar sat-1 ut 649.1295.		499 100 100 99 100 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4	9974 386 412 065 5404 94 224 13 412 168	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar	e nar sat-1 ut 649.1295		499 100 100 99 100 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7	9974 386 412 065 5404 94 224 13 412 168 75	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya	e nar sat-1 ut 649.1295. n an		499 100 100 99 100 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7	9974 386 412 065 5404 94 224 13 412 168 75 706	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm	e nar sat-1 ut 649.1295. n an		499 100 100 99 100 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5	9974 386 412 065 5404 94 224 13 412 168 75 706 526	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225	e nar sat-1 ut 649.1295. n an arsein		499 100 100 99 100 50 50 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6	9974 386 412 065 5404 94 224 13 412 168 75 706 526 586	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat	le Inar sat-1 ut 649.1295 n an Iarsein	.30	499 100 100 99 100 50 50 50 50 50 50 50 50 50 50 50 50 49	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6	9974 886 412 065 6404 94 224 13 412 168 75 706 526 586 586 50408	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment F	nar sat-1 ut 649.1295 an arsein t Pawsanyir	.30 n/Nagayar	499 100 100 99 100 50 50 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6	9974 886 412 065 6404 94 224 13 412 168 75 706 526 586 586 50408	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment F AB: Farmer Villa	nar sat-1 ut 649.1295 n an arsein tt Pawsanyir	.30 n/Nagayar	499 100 100 99 100 50 50 50 50 50 50 50 50 50 50 50 50 5	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6 88.8	9974 886 412 065 6404 94 224 13 412 168 75 706 526 586 50408 32	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144 3.838178
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment F AB: Earmor Villa Int Helght Date10 Zer ero Treatment Pawsanyin	nar sat-1 ut 649.1295. n an barsein t Pawsanyir pae Varieto o Treatwi Local 1 0	.30 n/Nagayar	499 100 100 99 100 50 50 50 50 50 50 50 50 50 50 50 50 5	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6 88.8	9974 386 412 065 3404 94 224 13 412 168 75 706 526 586 50408 32 -11T, Sait 3 Sinthy Fic 21 1	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.3254 2.32556 2.32567 2.32567 2.32567 2.325	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144 3.838178 M Flodding 3 IR-84649.1295 2 7
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment F AB: Earmer Villa Iant_Height_Date10 Zer to Treatment Pawsanyin coal 1 Baygyar	nar sat-1 ut 649.1295 n an arsein t Pawsanyir Pawsanyir or treatm or Variatu	.30 n/Nagayar Bayg Local 2 Kyar, Lo 7 12 0 5	499 100 100 99 100 50 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6 88.8	9974 386 412 965 3404 94 224 13 412 168 75 706 526 586 50408 32 -11T, Salt 3 Sinthw Flc 21 1 28 8	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.3254 2.32556 2.32566 2.32566 2.32566 2.32566 2.3256	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144 3.838178 M Flodding 3 IR-84649.1295 2 7 9 14
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment P AB: Earmar Villa Iant Height Date10 Zer Cor Treatment Pawsanyin ocal 1 Baygyar coal 2 Kyarpyan	nar sat-1 ut 649.1295 n an arsein tt Pawsanyir pawsanyir pawsanyir pawsanyir arset 2 awsanyir ar	.30 n/Nagayar Baygi Local 2 Kyarr Lo 7 12 5 0	499 100 100 99 100 50 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6 88.8	9974 386 412 065 5404 94 224 13 412 168 75 706 526 586 50408 32 -11T, Salt 3 Sinthy Flo 21 1 28 8 33 13	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.32254 2.3254 2	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144 3.838178 M Flodding 3 IR-84649.1295 2 7 9 14 19
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment Pawsanyin ocal 1 Baygyar ocal 3 Taungpyan	nar sat-1 ut 649.1295 n an arsein t Pawsanyir Pawsanyir or treatm or Variatu	.30 n/Nagayar Bayg Local 2 Kyar, Lo 7 12 0 5	499 100 100 99 100 50 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6 88.8	9974 386 412 965 3404 94 224 13 412 168 75 706 526 586 50408 32 -11T, Salt 3 Sinthw Flc 21 1 28 8	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144 3.838178 M Flodding 3 IR-84649.1295 2 7 9 14
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment F AB: Earmer Ville Plant_Height_Date10 Zer fero Treatment Pawsanyin ocal 3 Taungpyan ocal 1 Baygyar ocal 2 Kyarpyan ocal 3 Taungpyan alt 1 Pyimyanmarsein alt 2 IR-11725	nar sat-1 ut 649.1295 n an harsein t Pawsanyir Pawsanyir o Tream Local 1 0 7 12 9 9 27 21	.30 h/Nagayar Bayg Local 2 Kyarc Lo 7 12 0 5 5 0 2 3 34 39 28 33	499 100 100 99 100 50 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6 88.8 vimyz Salt 2 IR 27 34 39 36 0 6	2974 386 412 065 3404 94 224 13 412 168 75 706 526 586 50408 32 +11T. Salt 3 Sinthw Flc 21 128 33 30 6 26 33 30 6 26	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254 2.3254 2.32554 2.3254 2.3254 2.3254 2.3254 2.32554 2.3254 2.3	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144 3.838178 M Flodding 3 IR-84649.1295 2 7 9 14 16 15 2 20 19 14
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment P Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment Passanyin ocal 3 Taungpyan alt 1 Pyimyanmaselin alt 2 Ryarpyan ocal 3 Taungpyan alt 1 Pyimyanmaselin alt 2 R-17225 alt 3 Sinthwelatt	inar sat-1 ut 649.1295. n an iarsein tt Pawsanyir pro Varieto 7 12 9 27 21 1	.30 n/Nagayar Baygi Local 2 Kyarr Lo 7 12 5 0 2 3 34 39 28 33 8 13	499 100 100 99 100 50 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6 87.6 88.8 27 34 39 36 0 6 26	2974 386 412 065 5404 94 224 13 412 168 75 706 526 586 50408 32 1117 28 33 30 10 6 20 0	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144 3.838178 M Flodding 3 IR-84649.1295 2 7 9 14 1 6 2 20 19 14 1 6
Term All A: Farmer_Villag 1 2 3 4 5 B: Variety Flodding 1 Sawa Flodding 2 Meky Flodding 3 IR-84 Local 1 Baygyar Local 2 Kyarpyar Local 3 Taungpya Salt 1 Pyimyanm Salt 2 IR-225 Salt 3 Sinthwelat Zero Treatment F AB: Farmer Villa	nar sat-1 ut 649.1295 n an harsein t Pawsanyir Pawsanyir o Treatm Local 1 0 7 12 9 9 27 21	.30 h/Nagayar Bayg Local 2 Kyarc Lo 7 12 0 5 5 0 2 3 34 39 28 33	499 100 100 99 100 50 50 50 50 50 50 50 50 50	84.9 83.8 89.4 96.0 80.6 74.9 79.2 87.1 83.4 91.1 94.7 91.7 69.5 76.6 87.6 88.8 vimyz Salt 2 IR 27 34 39 36 0 6	2974 386 412 065 3404 94 224 13 412 168 75 706 526 586 50408 32 +11T. Salt 3 Sinthw Flc 21 128 33 30 6 26 33 30 6 26	Error 1.071095 1.071095 1.071095 1.076491 1.071095 2.323254	84.98182 -1.095822 4.430178 11.08318 -4.375711 -10.04182 -5.757822 2.148178 -1.569822 6.186178 9.768178 6.724178 -15.45582 -8.295822 2.4144 3.838178 M Flodding 3 IR-84649.1295 2 7 9 14 16 15 2 20 19 14

	0.0.000		An	alysis of	Variance Re	port	
Page/Date/Time		17 12:46	5:12				
Database			ocumer	nts\ iai\P	H+I+LC-Dat	a-Boyargyi.S0	
Response	Height_Date	e11					
Analysis of Varia							
Source		Sum of		Mean		Prob	Power
Term	DF	Squares	r ()	Square	F-Rati	o Level	(Alpha=0.05)
A: Farmer_Village	4	31315.24	1	7828.811	55.2	6 0.000000*	
B: Variety	9	25359.94	1	2817.771	7.4	3 0.000005*	0.999950
AB		13646.02		379.0562	2.6		
S	446	63183.98	3	141.6681			
Total (Adjusted)	495	134009.1					
Total	496						
* Term significant a	at alpha = 0.05	5					
Treatment Dealer	Contine						
Friedman Test Se	ection						
	Friedm	nan			Prob	Concor	dance
Ties	(Q)		DF		Level	(W)	a a sure a fa
Ignored	28.014	545	9		0.000949	0.62254	5
Correction	28.048		9		0.000936	0.62330	
Concount	20.040	011	0		0.000000	0.02000	
Multiplicity	6						
				Analysis	of Variance	Papart	
Page/Date/Time	2 07.10.2	2017 12:		Analysis	or variance	Report	
Database				nents\ i	al/PH+T+I C	-Data-Boyarg	vi S0
Response	Height_Da		Dooun			Dula Dojulg	,
Means and Effec	to Continn						
means and Enec	is Section					Standard	
Term			Coun				
All				nt Me	an	Error	Effect
					an	Error	Effect
the second se			496		an .00907	Error	Effect 90.05004
A: Farmer_Village	É.		496	90	.00907		90.05004
A: Farmer_Village	È.		496 99	90 91	.00907 .73637	1.19624	90.05004 1.739511
A: Farmer_Village 1 2			496 99 100	90 91 94	.00907 .73637 .593	1.19624 1.190244	90.05004 1.739511 4.542955
A: Farmer_Village 1 2 3			496 99 100 98	90 91 94 10	.00907 .73637 .593 0.8694	1.19624 1.190244 1.202328	90.05004 1.739511 4.542955 10.68784
A: Farmer_Village 1 2 3 4			496 99 100 98 99	90 91 94 10 85	.00907 .73637 .593 0.8694 .59798	1.19624 1.190244 1.202328 1.19624	90.05004 1.739511 4.542955 10.68784 -4.359267
A: Farmer_Village 1 2 3 4 5			496 99 100 98	90 91 94 10 85	.00907 .73637 .593 0.8694	1.19624 1.190244 1.202328	90.05004 1.739511 4.542955 10.68784
A: Farmer_Village 1 2 3 4 5 B: Variety			496 99 100 98 99 100	90 91 94 10 85 77	.00907 .73637 .593 0.8694 .59798 .439	1.19624 1.190244 1.202328 1.19624 1.190244	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan	ar sat-1		496 99 100 98 99 100 48	90 91 94 10 85 77 84	.00907 .73637 .593 0.8694 .59798 .439 .85833	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu	iar sat-1 t		496 99 100 98 99 100 48 50	90 91 94 10 85 77 84 91	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan	iar sat-1 t		496 99 100 98 99 100 48	90 91 94 10 85 77 84 91 86	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu	iar sat-1 t		496 99 100 98 99 100 48 50	90 91 94 10 85 77 84 91 86	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846	iar sat-1 t		496 99 100 98 99 100 48 50 50	90 91 94 10 85 77 84 91 86 96	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan	ar sat-1 t 49.1295.30		496 99 100 98 99 100 48 50 50 50	90 91 94 10 85 77 84 91 86 96 10	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyar	nar sat-1 t 49.1295.30 n		496 99 100 98 99 100 48 50 50 50 50 50 49	90 91 94 10 85 77 84 91 86 96 10 95	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyan Salt 1 Pyimyanma	nar sat-1 t 49.1295.30 n		496 99 100 98 99 100 48 50 50 50 50 50 50 50	90 91 94 10 85 77 84 91 86 96 10 95 74	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939 .218	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511 -15.83204
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpya Salt 1 Pyimyanma Salt 2 IR-225	nar sat-1 t 49.1295.30 n		496 99 100 98 99 100 48 50 50 50 50 50 49 50 49	90 91 94 10 85 77 84 91 86 96 10 95 74 84	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939 .218 .56734	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511 -15.83204 -5.239378
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpya Salt 1 Pyimyanma Salt 2 IR-225 Salt 3 Sinthwelatt	ar sat-1 t 49.1295.30 n arsein	navar	496 99 100 98 99 100 48 50 50 50 50 50 49 50 49 50	90 91 94 10 85 77 84 91 86 96 10 95 74 84 90	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939 .218 .56734 .968	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511 -15.83204 -5.239378 0.9179556
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpya Salt 1 Pyimyanma Salt 2 IR-225	ar sat-1 t 49.1295.30 n arsein awsanyin/Nag	gayar	496 99 100 98 99 100 48 50 50 50 50 50 49 50 49	90 91 94 10 85 77 84 91 86 96 10 95 74 84 90	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939 .218 .56734	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511 -15.83204 -5.239378
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 2 Kyarpyan Local 3 Taungpyal Salt 1 Pyimyanma Salt 2 IR-225 Salt 3 Sinthwelatt Zero Treatment Pa AB: Farmer Village	ar sat-1 t 49.1295.30 n arsein awsanyin/Nag te Varietv Treatmi Local 1 Bayey G	ocal 2 Kyarr Lo	496 99 100 98 99 100 48 50 50 50 50 50 50 50 50 50 50	90 91 94 10 85 77 84 91 86 96 10 95 74 84 90 94 alt 1 Pyimye Salt 3	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939 .218 .56734 .968 .27	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511 -15.83204 -5.239378 0.9179556 4.219955 M Flodding 3 IR-84649.129
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyar Salt 1 Pyimyanma Salt 2 IR-225 Salt 3 Sinthwelatt Zero Treatment Pa AB: Farmer Village	ar sat-1 t 49.1295.30 n arsein awsanyin/Nag a Variety		496 99 100 98 99 100 48 50 50 50 50 50 49 50 50 50	90 91 94 10 85 77 84 91 86 96 10 95 74 84 90 94	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939 .218 .56734 .968 .27	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511 -15.83204 -5.239378 0.9179556 4.219955
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyar Salt 1 Pyimyanma Salt 2 IR-225 Salt 3 Sinthwelatt Zero Treatment Pa AB: Farmer Villac ant Height Date11 Zero Treatment Pawsanyin cal 1 Baygyar cal 2 Kyarpyan	ar sat-1 t 49.1295.30 n arsein awsanyin/Nag se Varietv Treatm(Local 1 Bayes) (r 0 3 9 0 9 6	ocal 2 Kyarç Loc 9 6 0	496 99 100 98 99 100 48 50 50 50 50 50 50 50 50 50 50 50 50 50	90 91 94 10 85 77 84 91 86 96 10 95 74 84 90 94 alt 1 Pyimye Salt 3 33 39	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939 .218 .56734 .968 .27 20 7 20 7 29 16	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.75384 2.753384 2.753384 2.753384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511 -15.83204 -5.239378 0.9179556 4.219955 M Flodding 3 IR-84649.129 9 14 12 17 18 23
A: Farmer_Village 1 2 3 4 5 B: Variety Flodding 1 Sawan Flodding 2 Mekyu Flodding 3 IR-846 Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyar Salt 1 Pyimyanma Salt 2 IR-225 Salt 3 Sinthwelatt Zero Treatment Pa AB: Farmer Village ant_Height_Date11 Zero Tor Treatment Pawsanyin cal 1 Baygyar	ar sat-1 t 49.1295.30 n arsein awsanyin/Nag be Varietv Treatmi Local 1 Bayes to 0 3 0 3 0 3	ocal 2 Kyarç Loc 9 6	496 99 100 98 99 100 48 50 50 50 50 50 49 50 50 50 50 50 3	90 91 94 10 85 77 84 91 86 96 10 95 74 84 90 95 74 84 90 94	.00907 .73637 .593 0.8694 .59798 .439 .85833 .83 .96 .464 0.672 .06939 .218 .56734 .968 .27	1.19624 1.190244 1.202328 1.19624 1.190244 2.810161 2.753384 2.75384 2.753384	90.05004 1.739511 4.542955 10.68784 -4.359267 -12.61104 -4.807822 1.779956 -3.090044 6.413956 10.62196 5.015511 -15.83204 -5.239378 0.9179556 4.219955 M Flodding 3 IR-84649.129 9 14 12 17

29

7

23

17

7

Salt 1 Pyimyanmarsein Salt 2 IR-11T225

Flodding 1 Swarna Sub-1

Flodding 2 Mekyut Flodding 3 IR-84649.1295.30

Salt 3 Sinthwelatt

11 0

2

6

7

2 9

7 5

Zokekali:

Summary		
Weeks after Transplanting	Significance of Variety (Fried- man Test, 8 Factors, 5 Blocks)	Significant differences (Wilcox- on-Wilcox Test n=5 k=8)
1	ANOVA: Yes (F _{7,28} = 28.05, p<0.01)	SMCT: F1, S2< 0T, L1, L2, L3
		S1, S3<0T, L2
2	Yes (Q= 28.80, p<0.01)	S1<0T
		S1, S2, F1 < L2
3	Yes (Q= 28.20, p<0.01)	\$2 <l2< td=""></l2<>
		S1, S2<0T
4	Yes (Q= 28.53, p<0.01)	F1, S2<0T, L2
5	Yes (Q= 28.73, p<0.01)	S2 <l1, l2,="" l3<="" td=""></l1,>
		F1, S2<0T
6	Yes (Q= 28.46, p<0.01)	F1, S2<0T, L2, L3
7	Yes (Q= 29.73, p<0.01)	\$2 <l2< td=""></l2<>
		F1, S2<0T, L3
8	Yes (Q= 28.00, p<0.01)	F1<0T, L1, L2
		F1, S2 <l3< td=""></l3<>
9	Yes (Q= 25.6, p<0.01)	F1, S2<0T
10	Yes (Q= 27.27, p<0.01)	S2<0T, L3
11	Yes (Q= 29.60, p<0.01)	S2 <l2< td=""></l2<>
		F1,S1,S2<0T

Date 1:

	Analysis of variance Report
Page/Date/Time	1 08.10.2017 10:48:07
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Height_Date1

Analysis of Variance Table Source Sum of

Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Farmer Village	4	2284.859	571.2147	13.79	0.000000*	
B: Variety	7	10972.39	1567.484	16.00	0.000000*	1.000000
AB	28	2742.3	97.93929	2.36	0.000170*	
S	360	14912.95	41.42487			
Total (Adjusted)	399	30912.5				
Total	400					

* Term significant at alpha = 0.05

Means and Effects Section

			Standard	
Term	Count	Mean	Error	Effect
All	400	38.63		38.63
A: Farmer Village				
1	80	42.08625	0.7195907	3.45625
2	80	35.9275	0.7195907	-2.7025
3	80	36.25125	0.7195907	-2.37875
4	80	38.3625	0.7195907	-0.2675
5	80	40.5225	0.7195907	1.8925
B: Variety				
Flodding 1 Swarna Sub-1	50	32.106	1.399566	-6.524
Salt 2 IR-11T225	50	32.61	1.399566	-6.02
Local 1 Baygyar	50	42.298	1.399566	3.668
Local 2 Kyarpyan	50	45.144	1.399566	6.514
Local 3 Taungpyan	50	40.95	1.399566	2.32
Salt 1 Pyimyanmarsein	50	34.334	1.399566	-4.296
Salt 3 Sinthwelatt	50	35.724	1.399566	-2.906
Zero Treatment Pawsanyin	50	45.874	1.399566	7.244
AB: Farmer Village.Variety				

Analysis of Variance Report 3 08.10.2017 10:48:07 Z:\Users\Benjamin\Documents\ ... \NPH+T+LC+G-Data-Zokekali.S0 Height_Date1 Page/Date/Time Database Response

Scheffe's Multiple-Comparison Test

Response: Height_Date1 Term B: Variety

Alpha=0.050 Error Term=AB DF=28 MSE=97.93929 Critical Value=4.0638

Group	Count	Mean	Different From Groups
Flodding 1 Swarna Sub-1	50	32.106	Local 3 Taungpyan, Local 1 Baygyar
Salt 2 IR-11T225	50	32.61	Local 2 Kyarpyan, Zero Treatment Pawsanyin Local 3 Taungpyan, Local 1 Baygyar Local 2 Kyarpyan, Zero Treatment Pawsanyin
Salt 1 Pyimyanmarsein	50	34.334	Local 2 Kyarpyan, Zero Treatment Pawsanyin
Salt 3 Sinthwelatt	50	35.724	Local 2 Kyarpyan, Zero Treatment Pawsanyin
Local 3 Taungpyan	50	40.95	Flodding 1 Swarna Sub-1, Salt 2 IR-11T225
Local 1 Baygyar	50	42.298	Flodding 1 Swarna Sub-1, Salt 2 IR-11T225
Local 2 Kyarpyan	50	45.144	Flodding 1 Swarna Sub-1, Salt 2 IR-11T225 Salt 1 Pyimyanmarsein, Salt 3 Sinthwelatt
Zero Treatment Pawsanyin	50	45.874	Flodding 1 Swarna Sub-1, Salt 2 IR-11T225 Salt 1 Pyimyanmarsein, Salt 3 Sinthwelatt

Notes: This report provides multiple comparison tests for all possible contrasts among the the means. These contrasts may involve more groups than just each pair, so the method is much stricter than need be. The Tukey-Kramer method provides more accurate results when only pairwise comparisons are needed.

Analysis of Variance Report 4 08.10.2017 10:48:07 Z:\Users\Benjamin\Documents\ ... \\PH+T+LC+G-Data-Zokekali.S0 Height_Date1 Page/Date/Time Database Response

Tukey Kramer Multiple Comparison Test

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Friedman Test Sec	ction							
	Friedman	1		Pro	b	Concord	lance	
Ties	(Q)	D	F	Lev		(W)	antee	
Ignored	28.80000	_	-		0157	0.822857	,	
Correction	28.80000				0157	0.822857		
Correction	28.80000	0 7		0.00	0157	0.822857		
Multiplicity	0							
				lysis of V	ariance	Report		
Page/Date/Time Database Response				s\ I \PH+	T+LC+G	-Data-Zokek	ali.S0	
Means and Effec	ts Section							
						Standard		
Term			Count	Mean		Error	Effec	ct
All			395	42.449	37		42.3	5883
A: Farmer_Village	9				50			
1		1.1	75	47,176		0.8000633	4.06	9083
2			80	39.165		0.774658		3833
3			80	40.836		0.774658		2583
4			B0	40.416	T.T	0.774658		2583
5 Di Mariata			80	44.948	15	0.774658	2.58	9917
B: Variety			10					
Flodding 1 Swarn	a Sub-1		46	36.380		1.651922		4167
Local 1 Baygyar			50	47.748		1.584468	5.389	
Local 2 Kyarpyan			50	49.854		1.584468	7.49	
Local 3 Taungpya			50	46.018		1.584468	3.65	9167
Salt 1 Pyimyanma			50	35.632		1.584468		6833
Salt 2 IR-11T255			50	34.96		1.584468		8833
Salt 3 Sinthwelatt			49	39.867	35	1.600555		2833
Zero Treatment P	awsanyin		50	48.598		1.584468	6.23	
Plant_Height_Date2	Zero Treatme Local	1 Baygy Loca	al 2 Kyarp Lo	cal 3 Tauni Sal	t 1 Pyimya Sa	alt 3 Sinthw Flodd	ing 1 Sv Salt	2 IR-117
ero Treatment Pawsanyin	0	2	4	5	24	14	20	23
ocal 1 Baygyar	2	0	6	3	22	12	18	21
ocal 2 Kyarpyan	4	6	0	9	28	18	24	27
ocal 3 Taungpyan	5	3	9	0	19	9	15	18
alt 1 Pyimyanmarsein	24	22	28	19	O	10	4	1
alt 3 Sinthwelatt	14	12	18	9	10	0	6	9
lodding 1 Swarna Sub-1	20	18	24	15	4	6	0	3
Salt 2 IR-11T225	23	21	27	18	1	9	3	0

Friedman Test Se	ection							
Theuman reer et	Fried	man		10	Prob	Cor	corda	nce
Ties	(Q)	in an	DF		Level	(W)		100
lanored	28.20	0000	7		0.000202		05714	
Correction	28.20		7		0.000202		05714	
Correction	20.20	0000	1		5.000202	0.60	5714	
Multiplicity	0							
2				alysis	of Varianc	e Report	2	
Page/Date/Time		0.2017 1						
Database			in\Document	ts\ \	PH+T+LC+	-G-Data-Z	Zokekal	i.S0
Response	Height_D	Date_3						
Means and Effe	cts Section							
			11005			Standa	ard	
Term			Count	Me		Error		Effect
All			397	51.	11637			51.01231
A: Farmer_Villag	e							
1			79	53.	7443	1.0508	83	2.523528
2			79	46.	83924	1.0508	83	-4.307445
3			79	48.	99873	1.0508	83	-2.143972
4			80		2175	1.0442		0.2051944
5			80		735	1.0442		3.722694
B: Variety				•				0.122001
Flodding 1 Swarr	a Sub 1		49	12	59592	1.8996	13	-8.526972
Local 1 Baygyar			50		568	1.8805		6.555695
	5 a 1		50	59.				
Local 2 Kyarpyar				1000		1.8805	1-2-12	8.377694
Local 3 Taungpya			50	58.		1.8805		7.575695
Salt 1 Pyimyanm			49	10.75	39388	1.8996	50 E .	-8.694972
Salt 2 IR-11T255			49		96531	1.8996		-10.14453
Salt 3 Sinthwelat	t		50	46.	186	1.8805	21	-4.826305
Zero Treatment F	Pawsanyin		50	60.	696	1.8805	21	9.683695
Plant_Height_Date3	Zero Treatme Loc	al 1 Baygy Lo	ocal 2 Kyarp Local 3	3 Tauni Sa	lt 1 Pyimya Salt	3 Sinthw Floo	lding 1 Sv S	alt 2 IR-11T225
ero Treatment Pawsanyin	0	5	1	4	24	18	23	25
ocal 1 Baygyar	5	0	4	1	19	13	18	20
ocal 2 Kyarpyan	1	4	0	3	23	17	22	24
ocal 3 Taungpyan	4	1	3	0	20	14	19	21
alt 1 Pyimyanmarsein	24	19	23	20	0	6	1	1
alt 3 Sinthwelatt	18	13	17	14	6	0	5	7
lodding 1 Swarna Sub-1	23	18	22	19	1	5	0	2

Date 4:

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	28.533333	7	0.000176	0.815238
Correction	28.533333	7	0.000176	0.815238

Analysis of Variance Report

Page/Date/Time	2 09.10.2017 15:46:18
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Height_Date4

						Standard			
Term			Count	Mean		Error		Effect	
All			399	57.777	95			57.7543	6
A: Farmer Village									
1			80	59.956	25	0.9784516	6	2.20188	9
2			80	51.635		0.9784510		-6.11936	
3			79	54.296		0.9846249		-3.53255	
4			80	58.921		0.9784516	-	1.16688	
5			80	64.037		0.9784516		6.28313	
B: Variety			00	04.001	•	0.0104010		0.20010	0
Flodding 1 Swarna	Sub 1		50	48.17		2.145791		-9.58436	21
Local 1 Baygyar	a Sub-1		50	63.92		2.145791		6.16563	
Local 2 Kyarpyan			50	67.14		2.145791		9.38563	
Local 3 Taungpyar			50	64.792		2.145791		7.03763	
Salt 1 Pyimyanma	rsein		49	48.948	98	2.167576		-8.81747	
Salt 2 IR-11T255			50	46.118		2.145791		-11.6363	36
Salt 3 Sinthwelatt			50	54.54		2.145791		-3.21436	61
Zero Treatment Pa	awsanyin		50	68.418		2.145791		10.6636	4
Plant_Height_Date4	Zero Treatme Loca	al 1 Baygy Loo	cal 2 Kyarp Lo	cal 3 Tauni Salt	1 Pyimya S	alt 3 Sinthw Flod	lding 1 Sv	Salt 2 IR-11	T225
Zero Treatment Pawsanyin	0	7	2	7	23	15	27	2	7
Local 1 Baygyar	7	0	5	0	16	8	20	20	0
Local 2 Kyarpyan	2	5	0	5	21	13	25	2	5
Local 3 Taungpyan	7	0	5	0	16	8	20	20	0
Salt 1 Pyimyanmarsein	23	16	21	16	0	8	4		4
Salt 3 Sinthwelatt	15	8	13	8	8	0	12	12	2
Flodding 1 Swarna Sub-1	27	20	25	20	4	12	0		0
Salt 2 IR-11T225	27	20	25	20	4	12	0		0

Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	28.733333	7	0.000162	0.820952
Correction	28.733333	7	0.000162	0.820952
Multiplicity	0			

Analysis of Variance Report

Page/Date/Time	2 09.10.2017 15:46:33
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Height_Date5

						Standard			
Term			Count Mean			Error	Effe	Effect	
All			399				65.0	4447	
A: Farmer Village									
1			80	64.945		1.064831	-9.9	-9.947222E-02	
2			79	59.3215	2	1.07155		-5.774611	
3			80	63.31875		1.064831		-1.725722	
4			80	65.68125		1.064831		0.6367778	
5			80	72.0075	•	1.064831		6.963028	
B: Variety			00	12.0010		1.004001	0.00	0020	
	Sub-1		50	53,726		2.383241	-11 1	-11.31847	
Flodding 1 Swarna Sub-1		50	72.75		2.383241		7.705528		
Local 1 Baygyar									
Local 2 Kyarpyan			50			2.383241		7.043528	
Local 3 Taungpyan			49 73.6347			2.407437		8.221306	
Salt 1 Pyimyanma	Salt 1 Pyimyanmarsein		50	57.642		2.383241	-7.40	-7.402472	
Salt 2 IR-11T255			50	51.09	51.09		-13.9	-13.95447	
Salt 3 Sinthwelatt			50 62.84			2.383241	-2.2	-2.204472	
Zero Treatment Pawsanyin		50	76.954		2.383241		11.90953		
Plant_Height_Date5	Zero Treatme L	ocal 1 Baygy	Local 2 Kyarp Lo	cal 3 Tauni Salt :	1 Pyimya S	alt 3 Sinthw Flode	ding 1 Sv Salt	2 IR-11T225	
Zero Treatment Pawsanyin	0	4	5	3	20	14	25	29	
Local 1 Baygyar	4	0	1	1	16	10	21	25	
Local 2 Kyarpyan	5	1	0	2	15	9	20	24	
Local 3 Taungpyan	3	1	2	0	17	11	22	26	
Salt 1 Pyimyanmarsein	20	16	15	17	0	6	5	9	
Salt 3 Sinthwelatt	14	10	9	11	6	0	11	15	
Flodding 1 Swarna Sub-1	25	21	20	22	5	11	0	4	
Salt 2 IR-11T225	29	25	24	26	9	15	4	0	

Date 6:					
Friedman Test S	ection				
	Friedman		Prob	Concordance	
Ties	(Q)	DF	Level	(W)	
Ignored	28.466667	7	0.000181	0.813333	
Correction	28.466667	7	0.000181	0.813333	
Multiplicity	0				

Analysis of Variance Report

Page/Date/Time	2 09.10.2017 15:46:46
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Height_Date6

					1.1.1	Standard			
Term	Co	Count Mean			Error	Effect	Effect		
All		399	399 67.49787		7			67.45023	
A: Farmer_Village									
1		79		67.86709	9	1.040055	0.174	0.1740694	
2		80		60.83375		1.033534	-6.616	-6.616486	
3		80		67.1887		1.033534		-0.2614861	
4		80				1.033534		1.726389E-02	
5		80				1.033534		6.686639	
B: Variety				11.1000	2		0.000	000	
Flodding 1 Swarna Sub-1		49	49 55.0449		1	2.456061	-12 53	-12.53735	
		50				2.431376		7.935764	
Local 1 Baygyar		50				2.431376		8.083764	
Local 2 Kyarpyan				75.534				9.039763	
Local 3 Taungpyan		50 50		76.49		2.431376			
Salt 1 Pyimyanmarsein				60.542		2.431376		-6.908236	
Salt 2 IR-11T255		50		54.491		2.431376		-12.95924	
Salt 3 Sinthwelatt		50			2.431376		-2.569236		
Zero Treatment Pawsanyin		50	50 77.365			2.431376	9.914763		
Plant_Height_Date6	Zero Treatme Loca	al 1 Baygy Local	2 Kyarp L	ocal 3 Tauni Sal	t 1 Pyimya	Salt 3 Sinthw Flo	dding 1 Sv Salt	2 IR-11T22	
Zero Treatment Pawsanyin	0	2	1	0	16	15	25	25	
Local 1 Baygyar	2	0	1	2	14	13	23	23	
Local 2 Kyarpyan	1	1	0	1	15	14	24	24	
Local 3 Taungpyan	0	2	1	0	16	15	25	25	
Salt 1 Pyimyanmarsein	16	14	15	16	0	1	9	9	
Salt 3 Sinthwelatt	15	13	14	15	1	0	10	10	
Flodding 1 Swarna Sub-1	25	23	24	25	9	10	0	0	
Salt 2 IR-11T225	25	23	24	25	9	10	0	0	

Date 7:				
Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	29.733333	7	0.000106	0.849524
Correction	29.733333	7	0.000106	0.849524
Multiplicity	0			

Page/Date/Time	2 09.10.2017 15:46:56
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Height_Date7

						Standard			
Term			ount	Mean		Error	Effec		
All		40	00	69.222			69.22	22	
A: Farmer_Village									
1		8	0	68.29125		0.947632	-0.93	075	
2		8	0	62.91875		0.947632	-6.30	325	
3		8	0	69.38		0.947632	0.158	3	
4		8	0	69.25375		0.947632	0.031	75	
5		8		76.26625		0.947632	7.04425		
B: Variety									
Flodding 1 Swarna	Sub-1	50	0	54.968		2.37134	-14.2	-14.254	
Local 1 Baygyar		5		76.75		2.37134	7.528		
Local 2 Kyarpyan		5		76.778		2.37134	7.556		
Local 3 Taungpyan		5		78,728		2.37134	9.506		
Salt 1 Pyimyanmar		5		63.32			-5.90		
Salt 2 IR-11T255	oom	50		54.59		2.37134	-14.632		
Salt 3 Sinthwelatt		5		68.752		2.37134	-0.47		
Zero Treatment Pa	weenvin	5		79.89		2.37134	10.66		
AD: Former Villege		50	J	19.09		2.37134	10.00	00	
lant Height Date7	Zero Treatme Loca	al 1 Baygy Loca	al 2 Kyarp Lo	ocal 3 Tauni Salt 1	Pyimya !	Salt 3 Sinthw Flod	ding 1 Sv Salt	2 IR-11T225	
ero Treatment Pawsanyin	0	4	3	0	18	14	26	27	
ocal 1 Baygyar	4	0	1	4	14	10	22	23	
ocal 2 Kyarpyan	3	1	0	3	15	11	23	24	
ocal 3 Taungpyan	0	4	3	0	18	14	26	27	
alt 1 Pyimyanmarsein	18	14	15	18	0	4	8	9	
alt 3 Sinthwelatt	14	10	11	14	4	0	12	13	
lodding 1 Swarna Sub-1	26	22	23	26	8	12	0	1	
Salt 2 IR-11T225	27	23	24	27	9	13	1	0	

Friedman Test S	action			
rneuman rest o	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	28.000000	7	0.000220	0.800000
Correction	28.000000	7	0.000220	0.800000
Multiplicity	0			

Page/Date/Time	2 09.10.2017 15:47:08
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Height_Date8

						Standard		
Term		C	ount	Mean		Error	Effec	t
All		39	99	71.2093			71.20	8
A: Farmer Village								
1		8	0	67.45625	5	1.003449	-3.75	1747
2		79	9	65.42658		1.00978		5636
3		8		75.1025		1.003449	3.894	
4		8		71.82762	>	1.003449		6278
5		8		76.16125		1.003449	4.953	
B: Variety								
Flodding 1 Swarna Sub-1		50	50			2.145728	-16.0458	
Local 1 Baygyar	Oub 1	50		55.1622 80.238		2.145728	9.030003	
Local 2 Kyarpyan		50		79.038 81.88979 62.096		2.145728	7.830003	
Local 3 Taungpyan		49				2.167512		
		5				2.145728		-9.111998
Salt 1 Pyimyanmar	sem							
Salt 2 IR-11T255		50		56.444		2.145728	-14.764	
Salt 3 Sinthwelatt		5		73.474		2.145728	2.266003	
Zero Treatment Par	A CONTRACTOR OF	50	50 81.546			2.145728	10.33	38
AB: Farmer Village	e,Variety							
lant_Height_Date8	Zero Treatme Loca	al 1 Baygy Loca	l 2 Kyarp Lo	ocal 3 Tauni Salt	1 Pyimya	Salt 3 Sinthw Flode	ding 1 Sv Salt	2 IR-11T22
ero Treatment Pawsanyin	0	0	1	2	17	8	24	22
ocal 1 Baygyar	0	0	1	2	17	8	24	22
ocal 2 Kyarpyan	1	1	0	1	18	9	25	23
ocal 3 Taungpyan	2	2	1	Ö	19	10	26	24
alt 1 Pyimyanmarsein	17	17	18	19	0	9	7	5
alt 3 Sinthwelatt	8	8	9	10	9	0	16	14
lodding 1 Swarna Sub-1	24	24	25	26	7	16	0	2
Salt 2 IR-11T225	22	22	23	24	5	14	2	0

Friedman Test S	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	25.600000	7	0.000594	0.731429
Correction	25.600000	7	0.000594	0.731429
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time	2 09.10.2017 15:47:22
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Hieght Date9

						Standard		
Term			ount	Mean		Error	Effe	
All		3	96	75.9164	1		75.7	5871
A: Farmer Village								
1		8	0	74.5912	5	1.156622	-1.1	67465
2		8	0	68.7587	5	1.156622	-6.9	99965
3		7	9	80.9126	6	1.163919	4.98	1423
4		8	0	79.605		1.156622		6285
5		7		75.7714	3	1.178938	-0.6	602778
B: Variety								
Flodding 1 Swarna	Sub-1	4	9	60.1163	3	3.621022	-15.	88671
Local 1 Baygyar		5		87.77	2	3.584629		1128
Local 2 Kyarpyan		5		85.764		3.584629		0528
Local 3 Taungpyan		5		90.714		3.584629		5529
Salt 1 Pyimyanman		5		62.51		3.584629		24872
Salt 2 IR-11T255	oom	4		53.8595	7	3.697263		27699
Salt 3 Sinthwelatt		5		73.582	·	3.584629		76715
Zero Treatment Pay	wsanyin	5		91.376		3.584629		1728
AB: Former Village	Variaty							
Plant_Height_Date9	Zero Treatme Loca	al 1 Baygy Loca	al 2 Kyarp Lo	ocal 3 Tauni Salt	1 Pyimya	Salt 3 Sinthw Flod	ding 1 Sv Salt	2 IR-11T225
Zero Treatment Pawsanyin	0	4	4	3	22	10	24	25
Local 1 Baygyar	4	0	0	1	18	6	20	21
Local 2 Kyarpyan	4	0	0	1	18	6	20	21
Local 3 Taungpyan	3	1	1	0	19	7	21	22
Salt 1 Pyimyanmarsein	22	18	18	19	0	12	2	3
Salt 3 Sinthwelatt	10	6	6	7	12	0	14	15
Flodding 1 Swarna Sub-1	24	20	20	21	2	14	0	1
Salt 2 IR-11T225	25	21	21	22	3	15	1	0

Date 10:				
Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	27.266667	7	0.000298	0.779048
Correction	27.266667	7	0.000298	0.779048
Multiplicity	0			
wattplicity	U			

	Analysis of Variance Report
Page/Date/Time	2 09.10.2017 15:47:34
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Height_Date10

					5	Standard		
Term		C	ount	Mean	E	Fror	Effect	1
All		39	93	84.25776			83.99	607
A: Farmer Village								
1		80	0	87.73875	1	474069	3.742	681
2		79		73.91139		.483369	-10.36	
3		79		86.03038		.483369	1.633	
4		76		91.42632		.512363	6.299	
5		79		82.41013		.483369	-1.314542	
B: Variety			-	02.11010				
Flodding 1 Swarna	Sub-1	50	n	64.31	4	.545178	-19.68	8607
Local 1 Baygyar	oub-1	49		98.80204		.591323	14.91238	
Local 2 Kyarpyan		50		98.104		.545178	14.10793	
			50 106.184			.545178		
Local 3 Taungpyan	noin.	48					22.18793 -19.90562	
Salt 1 Pyimyanmars	sem			64.26458		.638903		
Salt 2 IR-11T255		47		55.37447		4.687994 4.591323	-28.48618 -4.892292	
Salt 3 Sinthwelatt		49		78.91633				
Zero Treatment Pav	vsanyin	50	0	105.758	4	.545178	21.76	193
Plant_Height_Date10	Zero Treatme Loo	al 1 Baygy Loo	al 2 Kyarp L	ocal 3 Tauni Salt :	1 Pyimya S	alt 3 Sinthw Floo	lding 1 Sv Salt	2 IR-11T2
Zero Treatment Pawsanyin	0	3	3	1	22	11	20	26
Local 1 Baygyar	3	0	0	4	19	8	17	23
Local 2 Kyarpyan	3	0	0	4	19	8	17	23
Local 3 Taungpyan	1	4	4	0	23	12	21	27
Salt 1 Pyimyanmarsein	22	19	19	23	0	11	2	4
Salt 3 Sinthwelatt	11	8	8	12	11	0	9	15
Flodding 1 Swarna Sub-1	20	17	17	21	2	9	0	6
Salt 2 IR-11T225	26	23	23	27	4	15	6	0

Date 11:

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	29.600000	7	0.000112	0.845714
Correction	29.600000	7	0.000112	0.845714

Multiplicity

Analysis of Variance Report

Page/Date/Time	2 08.10.2017 11:17:43
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Height_Date11

Means and Effects Section

0

					Standard		
		Count	Mean		Error	Effe	ct
		397	90.11	108		89.9	512
		80	94.15		1.195331	4.19	8799
		80	83.25	25	1.195331	-6.69	98701
					1,195331		07451
							44931
			00.00	000	1.202010	0.11	11001
Sub 1		50	66 03	2	5 286386	.23 (102
Sub-1							
sein			66.22	2			
		48	80.4		5.395395	-9.76	50701
		50	115.9	26	5.286386	25.9	748
	al 1 Baygy L	ocal 2 Kyarr Lo	ocal 3 Tauni	Salt 1 Pyimya	Salt 3 Sinthw Fl	odding 1 Sv Salt	2 IR-11T225
0	7	5	10	27	21	25	29
7	0	2	3	20	14	18	22
5	2	0	5	22	16	20	24
10	3	5	0	17	11	15	19
27	20	22	17	0	6	2	2
21	14	16	11	6	0	4	8
25	18	20	15	2	4	0	4
29	22	24	19	2	8	4	0
	Sein Wsanyin Zero Treatme Loc 0 7 5 10 27 21 25	Sub-1 sein Wariot: Zero Treatm(Local 1 Bayg) L 0 7 7 0 5 2 10 3 27 20 21 14 25 18	49 50 50 50 50 50 50 50 50 48 wsanyin 2ero Treatme Local 1 Baygi Local 2 Kyargi Local	397 90.11 80 94.15 80 83.25 80 83.25 80 88.74 78 93.67 79 90.83 Sub-1 50 66.93 49 60.44 50 107.6 50 107.6 50 107.6 50 111.29 sein 50 66.22 48 80.4 wsanyin 50 115.9 Montation 115.9 Vortation 2 3 5 2 0 5 10 3 5 0 27 20 22 17 21 14 16 11 25 18 20 15	397 90.11108 80 94.15 80 83.2525 80 88.74375 78 93.67693 79 90.83038 Sub-1 50 66.932 49 60.4449 50 107.632 50 107.632 50 111.254 sein 50 66.222 48 80.4 wsanyin 50 115.926 Montation Zero Treatm Local 1 Baygy Local 2 Kyarp Local 3 Taun/ Salt 1 Pyimyz 0 7 5 10 27 7 0 2 3 20 5 2 0 5 22 10 3 5 0 17 27 20 22 17 0 21 14 16 11 6 25 18 20 15 2	Count 397 Mean 90.11108 Error 80 94.15 1.195331 80 83.2525 1.195331 80 83.2525 1.195331 80 88.74375 1.195331 80 88.74375 1.195331 78 93.67693 1.210559 79 90.83038 1.202873 Sub-1 50 66.932 5.286386 50 111.096 5.286386 50 107.632 5.286386 50 107.632 5.286386 50 111.254 5.286386 50 115.926 5.286386 80.4 5.395395 wsanyin 50 115.926 5.286386 Variat: Zero Treatme Local 1 Baysy Local 2 Kyarp Local 3 Tauny Salt 1 Pyimyz Salt 3 Sinthw FI 0 7 5 10 27 21 7 0 2 3 20 14 5 2 0 5 22	Count 397 Mean 90.11108 Error Effe 89.9 80 94.15 1.195331 4.19 80 83.2525 1.195331 -6.65 80 88.74375 1.195331 -1.20 78 93.67693 1.210559 3.26 79 90.83038 1.202873 0.44 Sub-1 50 66.932 5.286386 -23.0 49 60.4449 5.340056 -29.5 50 111.096 5.286386 21.1 50 107.632 5.286386 21.3 50 111.254 5.286386 23.7 sein 50 66.222 5.286386 -23.7 48 80.4 5.395395 -9.76 wsanyin 50 115.926 5.286386 25.9 10 7 5 10 27 21 25 7 0 2 3 20 14 18 5 2 0 5 22 <t< td=""></t<>

Tillers:

5 No $(Q = 15.00, p=0.09)$ 6 No $(Q = 12.00, p=0.21)$	Boyargyi: Summary: Weeks after Transplanting 1 2 3 4	Significance of Variety (Friedman Test, 10 Factors, 5 Blocks) No (Q= 7.25, p=0.62) No (Q= 7.16, p=0.62) No (Q= 14.82, p=0.10) No (Q= 15.44, p=0.08)	Significant differences (Wilcoxon- Wilcox Test n=5 k=10)
	5	No $(Q = 15.00, p = 0.09)$	
	7	No (Q= 14.77, p=0.10)	
7 No (Q= 14.77, p=0.10)	8	No (Q= 6.81, p=0.66)	
	9 10 11	No (Q= 7.90, p=0.54) No (Q= 6.83, p=0.65) No (Q= 14.61, p=0.10)	

Friedman Test Se	Friedman		Prob	Concord	2000
Ties	(Q)	DF	Level	(W)	ance
Ignored	7,189091	9	0.617440	0.159758	é de la composition de la comp
Correction	7.250611	9		0.161125	
Correction	7.250611	9	0.611045	0.101125	
Multiplicity	42				
			alysis of Variance	Report	
Page/Date/Time	2 07.10.2017 14			2	
Database	Z:\Users\Benjami	n\Document	s\ ial\PH+T+LC	-Data-Boyargy	i.S0
Response	Tillers_Date1				
Means and Effect	ts Section				
Term		Count	Mean	Standard Error	Effec
		500	5.752	Enor	
All A: Farmer_Village		500	5.752		5.752
A. Farmer_village		100	5.68	0.2845581	-0.07
2		100	5.06	0.2845581	-0.69
3		100		0.2845581	
4		100	6.6 6.05	0.2845581	0.848
5 B: Variety		100	5.37	0.2845581	-0.38
Flodding 1 Sawan	ar sat-1	50	6.74	0.4634005	0.988
Flodding 2 Mekyut		50	5.86	0.4634005	0.108
Flodding 3 IR-84649.1295.30		50	5.24	0.4634005	-0.51
Local 1 Baygyar	10.1200.00	50	5.56	0.4634005	-0.19
Local 2 Kyarpyan		50	5.24	0.4634005	-0.51
Local 3 Taungpyan	n	50	5.24	0.4634005	-0.51
Salt 1 Pyimyanma		50	6.04	0.4634005	0.288
Salt 2 IR-225	u sem	50	6.24	0.4634005	0.488
Salt 3 Sinthwelatt		50	5.48	0.4634005	-0.27
	awsanyin/Nagayar	50	5.88	0.4634005	0.128
ate 2:		00	0.00	0.4004000	0.120
Friedman Test Se	ction				
rieuman iest se	Friedman		Prob	Concord	ance
lies	(Q)	DF	Level	(W)	
anored	7.145455	9	0.621978	0.158788	
Correction	7.162819	9	0.620172	0.159174	
Soncouon	7.102015	0	0.020172	0.100174	
Multiplicity	12				
		Ana	lysis of Variance	Report	
Page/Date/Time	2 07.10.2017 15		,		
Database	Z:\Users\Benjamin		s) ial/PH+T+LC	-Data-Bovarov	i.SO
Response	Tillers Date2			buttu boyungy	

		Standard	
Count	Mean	Error	Effect
434	5.497696		5.366714
86	4.581395	0.285866	-0.8033413
84	3.964286	0.2892491	-1.484214
82	4.865854	0.2927553	-0.602627
97	8.319588	0.2691695	2.951063
85	5.329412	0.2875426	-6.088095E-02
44	6.25	0.5198771	0.6955873
43	6.302326	0.5258874	0.8221746
45	4.622222	0.5140682	-0.9422699
39	5.25641	0.5521979	-0.2508413
46	4.978261	0.5084499	-0.4156032
44	5.795455	0.5198771	0.3738413
46	5.630435	0.5084499	0.2066191
45	5.733333	0.5140682	0.1783651
45	5.155556	0.5140682	-0.2506032
37	5.243243	0.5669257	-0.4172699
	434 86 84 82 97 85 44 43 45 39 46 44 46 45 45	4345.497696864.581395843.964286824.865854978.319588855.329412446.25436.302326454.622222395.25641464.978261445.795455465.630435455.733333455.155556	Count 434Mean 5.497696Error864.5813950.285866843.9642860.2892491824.8658540.2927553978.3195880.2691695855.3294120.2875426446.250.5198771436.3023260.5258874454.6222220.5140682395.256410.5521979464.9782610.5084499445.7954550.5198771465.6304350.5084499455.7333330.5140682455.1555660.5140682

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	14.781818	9	0.097106	0.328485
Correction	14.817740	9	0.096066	0.329283

Page/Date/Time	2 07.10.2017 15:13:24
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Tillers_Date3

Means and Effects Section

			Standard	
Term	Count	Mean	Error	Effect
All	446	4.094171		3.991722
A: Farmer_Village				
1	76	3.118421	0.2434386	-1.106167
2	95	3.663158	0.2177381	-0.3589444
3	93	3.55914	0.2200669	-0.4756111
4	92	5.554348	0.2212597	1.539191
5	90	4.433333	0.2237046	0.4015318
B: Variety				
Flodding 1 Sawanar sat-1	44	4.340909	0.3712904	0.0705
Flodding 2 Mekyut	50	4.1	0.3483013	0.1082778
Flodding 3 IR-84649.1295.30	47	4.12766	0.3592453	0.1071667
Local 1 Baygyar	43	3.790698	0.3755829	-0.1917222
Local 2 Kyarpyan	48	4.291667	0.3554835	0.2432778
Local 3 Taungpyan	43	4.186047	0.3755829	0.1527222
Salt 1 Pyimyanmarsein	47	5.021276	0.3592453	0.9966111
Salt 2 IR-225	41	3.634146	0.3846344	-0.5478333
Salt 3 Sinthwelatt	44	4.113636	0.3712904	3.49444E-02
Zero Treatment Pawsanyin/Nagayar AB: Farmer Village,Variety	39	3.102564	0.3943735	-0.9739444

Date 4:

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	15.381818	9	0.080968	0.341818
Correction	15.437956	9	0.079587	0.343066

Multiplicity

18

Analysis of Variance Report

Analysis of Variance Report 2 07.10.2017 15:14:15 Z:\Users\Benjamin\Documents\ ... ial\PH+T+LC-Data-Boyargyi.S0 Tillers_Date4 Page/Date/Time Database Response

Means and Effects Section				
			Standard	
Term	Count	Mean	Error	Effect
All	447	4.957494		4.809294
A: Farmer Village				
1	86	4.22093	0.324709	-0.7459603
2	98	5.408163	0.3041799	0.5384842
3	81	4.283951	0.3345808	-0.6503254
4	94	6.43617	0.3105844	1.472929
5	88	4.215909	0.3209979	-0.615127
B: Variety				
Flodding 1 Sawanar sat-1	48	4.979167	0.6094736	0.1440397
Flodding 2 Mekyut	44	5.772727	0.6365744	0.7948334
Flodding 3 IR-84649.1295.30	49	4.897959	0.6032224	9.515079E-02
Local 1 Baygyar	45	4.466667	0.6294616	-0.4848492
Local 2 Kyarpyan	43	5.348837	0.6439338	0.5407063
Local 3 Taungpyan	45	5.6	0.6294616	0.5751508
Salt 1 Pyimyanmarsein	48	6.104167	0.6094736	1.279595
Salt 2 IR-225	39	4.25641	0.6761502	-0.8421508
Salt 3 Sinthwelatt	49	4.816327	0.6032224	-2.262698E-02
Zero Treatment Pawsanyin/Nagayar	37	2.837838	0.6941841	-2.079849

Friedman Test Sec	tion				
Ties Ignored Correction	Friedman (Q) 14.923636 14.996346	DF 9 9	Prob Level 0.093055 0.091036	Concord (W) 0.331636 0.333252	
Multiplicity	24	Ŭ	0.001000	0.000202	
		A	lysis of Variance	Demant	
Page/Date/Time	2 07.10.2017 1		ilysis of variance	Report	
Database Response			s\ ial\PH+T+LC-	Data-Boyargy	i.S0
Means and Effects	Section			Standard	
Term		Count	Mean	Error	Effect
All		453	6.253863	LIIOI	6.063548
A: Farmer Village		100	0.200000		0.000040
1		92	5.25	0.3823822	-0.8766032
2		99	7.333333	0.3686158	1.232008
3		81	5.82716	0.4075201	-0.6049762
4		92	7.978261	0.3823822	1.60423
5		89	4.696629	0.3887734	-1.354659
B: Variety			1.000020	0.0001101	1.001000
Flodding 1 Sawana	r sat-1	47	5.93617	0.8192188	-0.1774365
Flodding 2 Mekyut	, out i	45	6.711111	0.8372257	0.5164524
Flodding 3 IR-8464	9 1295 30	48	6.333333	0.8106403	0.2186746
Local 1 Baygyar	0.1200.00	47	4.744681	0.8192188	-1.331325
Local 2 Kyarpyan		48	5.875	0.8106403	-0.1879921
Local 3 Taungpyan		41	6.902439	0.8771157	0.3247857
Salt 1 Pyimyanmars	sein	48	8.4375	0.8106403	2.406452
Salt 2 IR-225	Joint	46	5.869565	0.8280755	-0.3024365
Salt 3 Sinthwelatt		45	7.133333	0.8372257	0.8469286
Zero Treatment Pav	vsanyin/Nagayar	38	4.31579	0.9110811	-2.314103
Date 6:					
Friedman Test Sec	ction				
	Friedman		Prob	Conco	rdance
Ties	(Q)	DF	Level	(W)	
lanored	11.967273	9	0.215161		39
Correction	11.996355	9	0.213515		2.2
Multiplicity	12		10000		

2 07.10.2017 15:16:06 Z:\Users\Benjamin\Documents\ ... ial\PH+T+LC-Data-Boyargyi.S0 Page/Date/Time Database Response Tillers Date6

			Standard	
Term	Count	Mean	Error	Effect
All	493	7.472617		7.449111
A: Farmer_Village				
1	96	6.53125	0.4248919	-0.943
2	100	8.44	0.4163073	0.9908889
3	100	7.97	0.4163073	0.5208889
4	97	7.484536	0.422696	-1.966667E-02
5	100	6.9	0.4163073	-0.5491111
B: Variety				
Flodding 1 Sawanar sat-1	50	8.22	0.8727891	0.7708889
Flodding 2 Mekyut	50	7.7	0.8727891	0.2508889
Flodding 3 IR-84649.1295.30	50	7.42	0.8727891	-2.911111E-02
Local 1 Baygyar	49	6.530612	0.8816501	-0.9002222
Local 2 Kyarpyan	50	7.4	0.8727891	-4.911111E-02
Local 3 Taungpyan	48	7.5	0.8907866	-5.911111E-02
Salt 1 Pyimyanmarsein	50	8.94	0.8727891	1.490889
Salt 2 IR-225	48	7.208333	0.8907866	-0.2591111
Salt 3 Sinthwelatt	49	8.530612	0.8816501	1.030889
Zero Treatment Pawsanyin/Nagayar	49	5.22449	0.8816501	-2.246889

Friedman Test Se	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
gnored	14.716364	9	0.099027	0.327030
Correction	14.770073	9	0.097448	0.328224
Multiplicity	18			
		Ana	lysis of Variance F	Report

Response Tillers Date7

12

Means and Effects Section

Count 496 99 100 99 98 100	Mean 11.94355 11 12.55 14.18182 11.41837 10.57	Standa Error 0.6265 0.6233 0.6265 0.6296	038 634 038	Effect 11.94178 -0.9395555 0.6082222 2.219333
496 99 100 99 98	11.94355 11 12.55 14.18182 11.41837	0.6265 0.6233 0.6265 0.6296	634 038	11.94178 -0.9395555 0.6082222
99 100 99 98	11 12.55 14.18182 11.41837	0.6233 0.6265 0.6296	634 038	-0.9395555 0.6082222
100 99 98	12.55 14.18182 11.41837	0.6233 0.6265 0.6296	634 038	0.6082222
100 99 98	12.55 14.18182 11.41837	0.6233 0.6265 0.6296	634 038	0.6082222
99 98	14.18182 11.41837	0.6265 0.6296	038	
98	11.41837	0.6296		2.219333
			021	
100	10.57	0 6000	321	-0.5162222
		0.0233	634	-1.371778
50	14.34	1.3789	E.	2.398222
50	12.12	1.3789	1	0.1782222
50	10.42	1.3789	P	-1.521778
49	10.93878	1.3928	99	-0.9395555
50	11.22	1.3789	K.	-0.7217778
50	12.32	1.3789	P	0.3782222
49	13.67347	1.3928	99	1.700444
49	10.95918	1.3928	99	-0.9773333
50	14.3	1.3789	1	2.358222
49	9.081633	1.3928	99	-2.852889
	Prob		Cond	cordance
DF	Leve		(W)	
9	0.658	311	0.151	030
9	0.656	594	0.151	397
	50 50 49 50 50 49 49 50 49 50 49 DF 9	50 12.12 50 10.42 49 10.93878 50 11.22 50 12.32 49 13.67347 49 10.95918 50 14.3 49 9.081633 DF Level 9 0.658	50 12.12 1.3789 50 10.42 1.3789 49 10.93878 1.3928 50 11.22 1.3789 50 12.32 1.3789 49 13.67347 1.3928 49 10.95918 1.3928 50 14.3 1.3789 49 9.081633 1.3928 50 14.3 1.3789 49 9.081633 1.3928 50 14.3 1.3789 49 9.081633 1.3928 50 14.3 1.3789 49 9.081633 1.3928	50 12.12 1.3789 50 10.42 1.3789 49 10.93878 1.392899 50 11.22 1.3789 50 12.32 1.3789 49 13.67347 1.392899 49 10.95918 1.392899 50 14.3 1.3789 49 9.081633 1.392899 50 14.3 0.3789 49 9.081633 1.392899 50 14.3 0.3789 49 9.081633 1.392899 50 14.3 0.13789 49 9.081633 1.392899 50 14.3 0.13789 49 9.081633 1.392899

Analysis of Variance Report

Page/Date/Time 2 07.10.2017 15:17:26 Z:\Users\Benjamin\Documents\ ... ial\PH+T+LC-Data-Boyargyi.S0 Tillers_Date8 Database Response

Means and Effects Section

Multiplicity

Means and Effects Section					
			Standard		
Term	Count	Mean	Error	Effect	
All	499	13.72545		13.722	
A: Farmer_Village					
1	99	11.84848	0.752946	-1.872	
2	100	12.37	0.7491718	-1.352	
3	100	14.4	0.7491718	0.678	
4	100	13.46	0.7491718	-0.262	
5	100	16.53	0.7491718	2.808	
B: Variety					
Flodding 1 Sawanar sat-1	50	14.62	1.293676	0.898	
Flodding 2 Mekyut	50	14.7	1.293676	0.978	
Flodding 3 IR-84649.1295.30	50	12.62	1.293676	-1.102	
Local 1 Baygyar	50	13.84	1.293676	0.118	
Local 2 Kyarpyan	50	13.86	1.293676	0.138	
Local 3 Taungpyan	50	13.1	1.293676	-0.622	
Salt 1 Pyimyanmarsein	50	14	1.293676	0.278	
Salt 2 IR-225	49	12.44898	1.30681	-1.282	
Salt 3 Sinthwelatt	50	15.58	1.293676	1.858	
Zero Treatment Pawsanyin/Nagayar	50	12.46	1.293676	-1.262	

Date	α٠
Date	9.

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	7.898182	9	0.544439	0.175515
Correction	7.907767	9	0.543467	0.175728
Multiplicity	6			

Multiplicity

Analysis of Variance Report 2 07.10.2017 15:18:18 Page/Date/Time Z:\Users\Benjamin\Documents\ ... ial\PH+T+LC-Data-Boyargyi.S0

Database Response Tillers Date9

Means and Effects Section

		Standard	
Count	Mean	Error	Effect
498	12.61446		12.60111
100	9.54	0.7093321	-3.061111
99	9.121212	0.7129056	-3.52
100	19.35	0.7093321	6.748889
100	10.33	0.7093321	-2.271111
99	14.71717	0.7129056	2.103333
50	12.6	1.26864	-1.111111E-03
50	14.06	1.26864	1.458889
49	10.40816	1.28152	-2.298889
49	14	1.28152	1.387778
50	12.96	1.26864	0.3588889
50	13.42	1.26864	0.8188889
50	11.48	1.26864	-1.121111
50	11.42	1.26864	-1.181111
50	13.56	1.26864	0.9588889
50	12.22	1.26864	-0.3811111
	498 100 99 100 100 99 50 50 50 50 50 50 50 50 50	498 12.61446 100 9.54 99 9.121212 100 19.35 100 10.33 99 14.71717 50 12.6 50 14.06 49 10.40816 49 14 50 13.42 50 11.48 50 13.56	498 12.61446 100 9.54 0.7093321 99 9.121212 0.7129056 100 19.35 0.7093321 100 19.35 0.7093321 100 10.33 0.7093321 99 14.71717 0.7129056 50 12.6 1.26864 50 14.06 1.26864 49 10.40816 1.28152 50 12.96 1.26864 50 13.42 1.26864 50 11.48 1.26864 50 11.42 1.26864 50 13.56 1.26864

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	6.818182	9	0.656043	0.151515
Correction	6.834751	9	0.654319	0.151883

Multiplicity

Analysis of Variance Report

2 07.10.2017 15:19:36 Page/Date/Time Database Z:\Users\Benjamin\Documents\ ... ial\PH+T+LC-Data-Boyargyi.S0 Tillers_Date10 Response

Means and Effects Section

12

			Standard	
Term	Count	Mean	Error	Effect
All	499	12.02405		12.01311
A: Farmer_Village				
1	100	11.29	0.6553212	-0.7231111
2	100	11.18	0.6553212	-0.8331111
3	100	15.2	0.6553212	3.186889
4	99	10.10101	0.6586226	-1.947556
5	100	12.33	0.6553212	0.3168889
B: Variety				
Flodding 1 Sawanar sat-1	50	11.32	1.380329	-0.6931111
Flodding 2 Mekyut	50	13.16	1.380329	1.146889
Flodding 3 IR-84649.1295.30	50	9.22	1.380329	-2.793111
Local 1 Baygyar	50	13.96	1.380329	1.946889
Local 2 Kyarpyan	50	12.1	1.380329	8.688889E-02
Local 3 Taungpyan	50	13.28	1.380329	1.266889
Salt 1 Pyimyanmarsein	50	11.28	1.380329	-0.7331111
Salt 2 IR-225	50	10.62	1.380329	-1.393111
Salt 3 Sinthwelatt	49	12.26531	1.394343	0.138
Zero Treatment Pawsanyin/Nagayar	50	13.04	1.380329	1.026889

Date 11:

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	14.574545	9	0.103305	0.323879
Correction	14.609964	9	0.102222	0.324666
Multiplicity	12			

	Analysis of Variance Report
Page/Date/Time	2 07.10.2017 15:21:19
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Tillers_Date11

Means and Effects Section				
			Standard	
Term	Count	Mean	Error	Effect
All	496	11.57258		11.58289
A: Farmer_Village				
1	99	11.29293	0.656229	-0.2828889
2	100	10.53	0.6529396	-1.052889
3	98	15.33673	0.6595685	3.667111
4	99	9.777778	0.656229	-1.728444
5	100	10.98	0.6529396	-0.6028889
B: Variety				
Flodding 1 Sawanar sat-1	48	10.4375	1.453086	-1.096222
Flodding 2 Mekyut	50	13.74	1.423728	2.157111
Flodding 3 IR-84649.1295.30	50	7.96	1.423728	-3.622889
Local 1 Baygyar	50	14.38	1.423728	2.797111
Local 2 Kyarpyan	50	11.7	1.423728	0.1171111
Local 3 Taungpyan	49	12.59184	1.438182	1.106
Salt 1 Pyimyanmarsein	50	10.22	1.423728	-1.362889
Salt 2 IR-225	49	9.571428	1.438182	-1.989556
Salt 3 Sinthwelatt	50	12.18	1.423728	0.5971111
Zero Treatment Pawsanyin/Nagayar AB: Farmer Village Variety	50	12.88	1.423728	1.297111

Zokekali:

Summary: Weeks after Transplanting 1 2 3 4 5 6	Significance of Variety (Friedman Test, 8 Factors, 5 Blocks) No (Q= 3.44, p=0.84) No (Q= 7.76, p=0.35) No (Q= 3.36, p=0.85) No (Q= 8.40, p=0.30) No (Q= 10.18, p=0.18) No (Q= 6.40, p=0.49)	Significant differences (Wilcoxon- Wilcox Test n=5 k=8)
7 8	No (Q= 6.26, p=0.51) No (Q= 11.20, p=0.13)	
9 10	Yes (Q= 17.00, p=0.01) No (Q= 12.98, p=0.07)	
11	No (Q= 9.75, p=0.20)	

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	3.383333	7	0.847424	0.096667
Correction	3.440678	7	0.841468	0.098305
Multiplicity	42			
			lysis of Variance F	Report
Page/Date/Time	2 09.10.2017 1	5:51:24		
Database	Z:\Users\Benjam	in\Documents	s\ I\PH+T+LC+G-	Data-Zokekali.S0
Response	Tillers Date1			

Date 1:

				Standard	
Term		Count	Mean	Error	Effect
All		400	6.445		6.445
A: Farmer_Villag	e				
1		80	8.425	0.4218511	1.98
2		80	3.6375	0.4218511	-2.8075
3		80	6.8125	0.4218511	0.3675
4 5		80	4.475	0.4218511	-1.97
5		80	8.875	0.4218511	2.43
B: Variety					
Flodding 1 Swar	na Sub-1	50	5.96	0.617654	-0.485
Local 1 Baygyar		50	6.68	0.617654	0.235
Local 2 Kyarpyar	n	50	5.98	0.617654	-0.465
Local 3 Taungpy	an	50	6.22	0.617654	-0.225
Salt 1 Pyimyanm		50	6.82	0.617654	0.375
Salt 2 IR-11T255	5	50	6.06	0.617654	-0.385
Salt 3 Sinthwelat	t	50	6.66	0.617654	0.215
Zero Treatment	Pawsanyin	50	7.18	0.617654	0.735
AR Farmer Villa	ane Variety				
Date 2:					
Friedman Test S	Section				
	Friedman		Prob	Concor	dance
Ties	(Q)	DF	Level	(W)	200.04
	1			1/	

Ignored	7.750000	7	0.355154	0.221429
Correction	7.768496	7	0.353450	0.221957
Multiplicity	6			

Multiplicity

Analysis of Variance Report

	Analysis of Variance Report
Page/Date/Time	2 09.10.2017 15:51:38
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Tillers_Date2

			Standard	
Term	Count	Mean	Error	Effect
All	395	7.617722		7.570278
A: Farmer_Village				
1	75	7.64	0.4753053	-0.1688889
2	80	5.85	0.4602123	-1.720278
3	80	6.2125	0.4602123	-1.357778
4	80	7.825	0.4602123	0.2547222
5	80	10.5625	0.4602123	2.992222
B: Variety				
Flodding 1 Swarna Sub-1	46	8.23913	0.7424685	0.2497222
Local 1 Baygyar	50	7.36	0.7121507	-0.2102778
Local 2 Kyarpyan	50	7.98	0.7121507	0.4097222
Local 3 Taungpyan	50	7.46	0.7121507	-0.1102778
Salt 1 Pyimyanmarsein	50	6.98	0.7121507	-0.5902778
Salt 2 IR-11T255	50	6.44	0.7121507	-1.130278
Salt 3 Sinthwelatt	49	8	0.7193809	0.4119444
Zero Treatment Pawsanyin	50	8.54	0.7121507	0.9697222

Friedman Test Se	ction				
Ties Ignored Correction	Friedman (Q) 3.350000 3.357995	DF 7 7	Prob Level 0.850849 0.850030	Concord (W) 0.095714 0.095943	L.
Multiplicity	6				
Dana (Data /Tima	0. 00 10 0017 15		lysis of Variance	e Report	
Page/Date/Time Database Response	2 09.10.2017 15 Z:\Users\Benjamir Tillers_Date3		s\ \PH+T+LC+	G-Data-Zokeka	ali.SO
Means and Effect	s Section				
		2.3.1	August A. S.	Standard	
Term		Count	Mean	Error	Effect
All		397	8.743073		8.718056
A: Farmer_Village		70	0 704 540	0 5470004	0.000000
1 2		79 79	6.721519 6.316456	0.5473801 0.5473801	-2.038889 -2.423611
3		79	7.303797	0.5473801	-1.401389
4		80	9.875	0.5439482	1.156944
5		80	13.425	0.5439482	4.706944
B: Variety		00	10.420	0.0403402	4.700344
Flodding 1 Swarna	Sub-1	49	8.857142	0.865624	2.861111E-02
Local 1 Baygyar		50	8.52	0.8569241	-0.1980556
Local 2 Kyarpyan		50	8.64	0.8569241	-7.805555E-02
Local 3 Taungpyan	(50	8.14	0.8569241	-0.5780556
Salt 1 Pyimyanmai		49	8.612245	0.865624	-0.1113889
Salt 2 IR-11T255		49	8.061225	0.865624	-0.7269444
Salt 3 Sinthwelatt		50	9.16	0.8569241	0.4419445
Zero Treatment Pa	wsanyin	50	9.94	0.8569241	1.221944
Date 4:					
Friedman Test S	ection				
	Friedman		Prob	Conc	ordance
Ties	(Q)	DF	Level	(W)	
Ignored	8.400000	7	0.2986		
Correction	8.400000	7	0.2986	46 0.240	0000
Multiplicity	0				

Page/Date/Time 2 09.10.2017 15:52:04 Z:\Users\Benjamin\Documents\ ... I\PH+T+LC+G-Data-Zokekali.S0 Tillers_Date4 Database Response

Means and Effects Section				
			Standard	
Term	Count	Mean	Error	Effect
All	399	12.69674		12.70278
A: Farmer Village				
1	80	9.8	0.8276996	-2.902778
2	80	9.8125	0.8276996	-2.890278
3	79	11.35443	0.8329217	-1.301389
4	80	14.375	0.8276996	1.672222
5	80	18.125	0.8276996	5.422222
B: Variety				
Flodding 1 Swarna Sub-1	50	13.08	1.247576	0.3772222
Local 1 Baygyar	50	12.9	1.247576	0.1972222
Local 2 Kyarpyan	50	12.16	1.247576	-0.5427778
Local 3 Taungpyan	50	12.8	1.247576	9.72222E-02
Salt 1 Pyimyanmarsein	49	13.55102	1.260242	0.8794444
Salt 2 IR-11T255	50	10.26	1.247576	-2.442778
Salt 3 Sinthwelatt	50	11.72	1.247576	-0.9827778
Zero Treatment Pawsanyin	50	15.12	1.247576	2.417222
AB' Farmer Village Variety				

Date 5:				
Friedman Test Se	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	10.133333	7	0.181143	0.289524
Correction	10.181818	7	0.178502	0.290909
Multiplicity	12			
			alysis of Variance F	Report
Page/Date/Time	2 09.10.2017 1	5:52:16		
Database Response	Z:\Users\Benjami Tillers_Date5	n\Document	ts\ I\PH+T+LC+G-	Data-Zokekali.S0

				Standard	
Term		Count	Mean	Error	Effect
All		399	15.40351		15.385
A: Farmer Village					
1 -		80	14.85	0.9301736	-0.535
2		79	12.79747	0.9360422	-2.6475
3		80	15.925	0.9301736	0.54
4		80	16.275	0.9301736	0.89
5		80	17.1375	0.9301736	1.7525
B: Variety					
Flodding 1 Swarna Sub-1		50	14.3	1.746218	-1.085
Local 1 Baygyar		50	16.86	1.746218	1.475
Local 2 Kyarpyan		50	15.22	1.746218	-0.165
Local 3 Taungpyan		49	16.06122	1.763946	0.515
Salt 1 Pyimyanmarsein		50	16.56	1.746218	1.175
Salt 2 IR-11T255		50	12.92	1.746218	-2.465
Salt 3 Sinthwelatt		50	13.52	1.746218	-1.865
Zero Treatment Pawsanyi	n	50	17.8	1.746218	2.415
AD: Cormor Millogo Mariot					
Date 6:					
Friedman Test Section					
F	riedman		Prob	Concorda	ance
Ties (C	2)	DF	Level	(W)	
	366667	7	0.497646	0.181905	
Correction 6.	397129	7	0.494217	0.182775	

Analysis of Variance Report

Page/Date/Time	2 09.10.2017 15:52:27
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Tillers_Date6

Means and Effects Section

12

Multiplicity

			Standard	
Term	Count	Mean	Error	Effect
All	399	13.55138		13.54139
A: Farmer_Village				
1	79	13.67089	0.7717857	7.805555E-02
2	80	9.9625	0.7669469	-3.578889
3	80	14.7125	0.7669469	1.171111
4	80	14.35	0.7669469	0.8086111
5	80	15.0625	0.7669469	1.521111
B: Variety				
Flodding 1 Swarna Sub-1	49	13.26531	1.239963	-0.3502778
Local 1 Baygyar	50	14.46	1.227501	0.9186111
Local 2 Kyarpyan	50	13.58	1.227501	3.861111E-02
Local 3 Taungpyan	50	14	1.227501	0.4586111
Salt 1 Pyimyanmarsein	50	13.74	1.227501	0.1986111
Salt 2 IR-11T255	50	11.72	1.227501	-1.821389
Salt 3 Sinthwelatt	50	12.36	1.227501	-1.181389
Zero Treatment Pawsanyin	50	15.28	1.227501	1.738611
Zero Treatment Pawsanyin	50	15.28	1.227501	1.738611

Friedman Test Se				Constant States
	Friedman	1120	Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	6.250000	7	0.510880	0.178571
Correction	6.264916	7	0.509179	0.178998
Multiplicity	6			
		Ana	lysis of Variance F	Report
Page/Date/Time	2 09.10.2017 1	5:52:41		
Database			s\ I\PH+T+LC+G-	Data-Zokekali S0
Response	Tillers Date7			

				Standard	
Term		Count	Mean	Error	Effect
All		400	17.83		17.83
A: Farmer_Village					
1		80	19.6625	1.001475	1.8325
2		80	12.9625	1.001475	-4.8675
3		80	21.1	1.001475	3.27
2 3 4 5		80	17.65	1.001475	-0.18
5		80	17.775	1.001475	-0.055
B: Variety					
Flodding 1 Swarna	Sub-1	50	18.38	1.711692	0.55
Local 1 Baygyar		50	19.38	1.711692	1.55
Local 2 Kyarpyan		50	17.66	1.711692	-0.17
Local 3 Taungpyan		50	17.78	1.711692	-0.05
Salt 1 Pyimyanmars	ein	50	18.48	1.711692	0.65
Salt 2 IR-11T255		50	13.9	1.711692	-3.93
Salt 3 Sinthwelatt		50	17.06	1.711692	-0.77
Zero Treatment Paw	vsanvin	50	20	1.711692	2.17
AB: Farmer Village.					
Date 8:					
Friedman Test See	ction				
	Friedman		Prob	Conc	ordance
Ties	(Q)	DF	Level	(W)	
Ignored	11.200000	7	0.13013	30 0.320	000
Correction	11.200000	7	0.13013	30 0.320	000

Analysis of Variance Report

20

.

Page/Date/Time	2 09.10.2017 15:52:54
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Tillers_Date8

Means and Effects Section

0

Multiplicity

			Standard	
Term	Count	Mean	Error	Effect
All	399	14.59398		14.57389
A: Farmer_Village				
1	80	19.0875	0.8001615	4.513611
2	79	10.58228	0.8052099	-4.041945
3	80	19.6375	0.8001615	5.063611
4	80	12.4	0.8001615	-2.173889
5	80	11.2125	0.8001615	-3.361389
B: Variety				
Flodding 1 Swarna Sub-1	50	16.86	1.51929	2.286111
Local 1 Baygyar	50	16.64	1.51929	2.066111
Local 2 Kyarpyan	50	15.38	1.51929	0.8061111
Local 3 Taungpyan	49	14.22449	1.534714	-0.5027778
Salt 1 Pyimyanmarsein	50	12.54	1.51929	-2.033889
Salt 2 IR-11T255	50	10.74	1.51929	-3.833889
Salt 3 Sinthwelatt	50	13.84	1.51929	-0.7338889
Zero Treatment Pawsanyin	50	16.52	1.51929	1.946111

Date 9: **Friedman Test Section** Concordance Friedman Prob DF Ties (Q) Level (W) Ignored 17.000000 0.017396 7 0.485714 Correction 17.000000 7 0.017396 0.485714 Multiplicity 0

Analysis of Variance Report

Page/Date/Time	2 09.10.2017 15:53:07
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Tillers_Date9

			Standard	
Term	Count	Mean	Error	Effect
All	396	14.63384		14.57382
A: Farmer_Village				
1	80	21.575	0.825675	7.001181
2	80	9.7	0.825675	-4.873819
3	79	18.55696	0.8308843	3.885903
4	80	13.55	0.825675	-1.023819
5	77	9.649351	0.8416058	-4.989444
B: Variety				
Flodding 1 Swarna Sub-1	49	18.67347	1.967836	3.886181
Local 1 Baygyar	50	16.46	1.948058	1.886181
Local 2 Kyarpyan	50	16.42	1.948058	1.846181
Local 3 Taungpyan	50	15.38	1.948058	0.8061805
Salt 1 Pyimyanmarsein	50	12.12	1.948058	-2.45382
Salt 2 IR-11T255	47	7.510638	2.009268	-6.983264
Salt 3 Sinthwelatt	50	12.62	1.948058	-1.953819
Zero Treatment Pawsanyin	50	17.54	1.948058	2.966181
Tillers_Date9 Zero Treatm(Local	1 Baygy Local 2 Kyarr L	ocal 3 Taun; Salt 1 Pyir	mya Salt 3 Sinthw Floddir	ng 1 Sv Salt 2 IR-11T
Zoro Trootmont Powconvin 0	0 1	4	15 11	1 33

Thers_Dates	Zero meanin Loud	T DayBi LOCG	i z kyait Luca	1 3 Tauni Sait	r i ynnye Sait	5 Shiring Liou	ung 1 Ju Jair	2 11-1114
Zero Treatment Pawsanyin	0	0	1	4	15	11	1	22
Local 1 Baygyar	0	0	1	4	15	11	1	22
Local 2 Kyarpyan	1	1	0	3	14	10	2	21
Local 3 Taungpyan	4	4	3	0	11	7	5	18
Salt 1 Pyimyanmarsein	15	15	14	11	0	4	16	7
Salt 3 Sinthwelatt	11	11	10	7	4	0	12	11
Flodding 1 Swarna Sub-1	1	1	2	5	16	12	0	23
Salt 2 IR-11T225	22	22	21	18	7	11	23	0

tion Friedman (Q) 12.950000 12.980907	DF 7	Prob Level	Concord	ance
(Q) 12.950000			Concord	ance
12.950000		Loval		anoc
	7		(W)	
12.980907		0.073336	0.370000	
	7	0.072575	0.370883	
6				
0 00 40 0047 4		lysis of Variance	Report	
Tillers_Date10	In/Document	S\ I\PH+1+LC+	G-Data-Zokeka	1.50
Section				
			Standard	
	Count	Mean	Error	Effect
	393	11.95929		11.87451
	80	18.275	0.7096192	6.400486
	79	6.481013	0.7140964	-5.402292
	79	15.77215	0.7140964	3.847708
	76	7.894737	0.728054	-4.118611
	79	11.13924	0.7140964	-0.7272916
		14.51.5		Second Second
Sub-1				5.025486
				0.1210417
	7.7			0.8254861
				-0.6945139
ein				-1.963403
				-4.333958
5-652 ·				-0.725625
sanyin	50	13.62	2.183704	1.745486
Friedman	1.14 M	Prob		ice
9.759615	/	0.202610	0.278846	
24				
	2 09.10.2017 1 Z:\Users\Benjam Tillers_Date10 Section Sub-1 ein vsanyin friedman (Q) 9.666667 9.759615	Ana 2 09.10.2017 15:53:18 Z:\Users\Benjamin\Document Tillers_Date10 Section Section Section Sub-1 Sub-1 Solution Sub-1 Solution Friedman (Q) Sub-1 Solution Friedman (Q) Sub-1 Solution So	Analysis of Variance 2 09.10.2017 15:53:18 Z:\Users\Benjamin\Documents\I\PH+T+LC+ Tillers_Date10 Section ©ount Mean 393 11.95929 80 18.275 79 6.481013 79 15.77215 76 7.894737 79 11.13924 Sub-1 50 16.9 49 12 50 12.7 50 11.18 eein 48 10.10417 47 7.531915 49 11.28571 ysanyin 50 13.62 tion Friedman Prob Level 9.6666667 7 0.208263 9.759615 7 0.202610	Analysis of Variance Report 2 09.10.2017 15:53:18 Z:\Users\Benjamin\Documents\ \\PH+T+LC+G-Data-Zokeka Section Section Standard 80 18.275 0.7096192 79 6.481013 0.7140964 79 15.77215 0.7140964 79 11.13924 0.7140964 79 11.13924 0.7140964 79 11.13924 0.7140964 60 12.7 2.183704 60 12.7 2.183704 9 12.205875 50 6ein 48 10.10417 2.226734 47 7.531915 2.252319 49 11.28571 2.205875 ysanyin 50 13.62 2.183704 100 Prob Concordar (Q) DF Level (W) 9.6666667 7 0.202610 0.278846

1.1.1

	Analysis of Variance Report
Page/Date/Time	2 09.10.2017 15:53:32
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Tillers_Date11

			Standard	
Term	Count	Mean	Error	Effect
All	397	12.36776		12.34771
A: Farmer Village				
1	80	17.275	0.6636225	4.927292
2	80	9.825	0.6636225	-2.522708
3	80	11.875	0.6636225	-0.4727083
4	78	11.29487	0.6720766	-1.100833
5	79	11.53165	0.6678094	-0.8310417
B: Variety				
Flodding 1 Swarna Sub-1	50	16.94	1.612247	4.592292
Local 1 Baygyar	50	12.26	1.612247	-8.770833E-02
Local 2 Kyarpyan	50	12.58	1.612247	0.2322917
Local 3 Taungpyan	50	12.94	1.612247	0.5922917
Salt 1 Pyimyanmarsein	50	10.24	1.612247	-2.107708
Salt 2 IR-11T255	49	9.816326	1.628615	-2.521042
Salt 3 Sinthwelatt	48	11.41667	1.645493	-1.012708
Zero Treatment Pawsanyin	50	12.66	1.612247	0.3122917
AD: Former Milloge Mariety				

Leaf Colour:

Boyargyi: Summary:		
Weeks after	Significance of Variety (Friedman Test, 10	Significant differences (Wilcoxon-
Transplanting	Factors, 5 Blocks)	Wilcox Test n=5 k=10)
1	Yes (Q= 28.24, p<0.01)	L1 <f3< td=""></f3<>
		0T <f3, s1<="" td=""></f3,>
2	No (Q= 11.32, p=0.25)	
3	Yes (Q= 22.77, p<0.01)	L1, S2 <s1< td=""></s1<>
4	Yes (Q= 25.05, p<0.01)	0T, L1, S2 <s1< td=""></s1<>
5	No (Q= 13.22, p=0.15)	
6	Yes (Q= 29.56, p<0.01)	0T, F2, L1 <s1< td=""></s1<>
7	Yes (Q= 22.90, p<0.01)	0T <s1< td=""></s1<>
8	Yes (Q= 28.93, p<0.01)	F2 <f1, s1,="" s3<="" td=""></f1,>
9	No (Q= 12.23, p=0.20)	
10	Yes (Q= 17.26, p=0.04)	
11	Yes (Q= 29.43, p<0.01)	0T, F2, L3 <s1< td=""></s1<>

Date 1:				
Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	27.556364	9	0.001131	0.612364
Correction	28.240994	9	0.000869	0.627578
Multiplicity	120			

12

27

3

26

22

0

Page/Date/Time	2 07.10.2017 15:58:42
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date1

Means and Effects Section

Flodding 3 IR-84649.1295.30

34

32

								Standar	d																		
Term				Count	M	lean		Error		Effect																	
All				500	2	522				2.522																	
A: Farmer Vil	lage																										
	1					.54		5.836666	6E-02	0.018																	
	2 3					.34		5.836666	6F-02																		
						.55		5.836666																			
4						49		5.836666																			
5				100																							
				100	2	.69		5.836666	0E-02	0.168																	
B: Variety		5. C		50						1.2.2.2																	
Flodding 1 Sa	Flodding 1 Sawanar sat-1				2	.44		0.129640		-0.082																	
Flodding 2 Me	Flodding 2 Mekyut				2	.48		0.129640	05	-0.042																	
Flodding 3 IR-	Flodding 3 IR-84649.1295.30				2	.94		0.129640	05	0.418																	
	Local 1 Baygyar Local 2 Kyarpyan				2	.24		0.129640		-0.282																	
						68		0.129640		0.158																	
					il 3 Taungpyan 1 Pyimyanmarsein 2 IR-225						0.12964		-0.062														
																					2.92			0.1296405		0.398	
and the second			liaiseili							50 50																	
	Salt 2 IR-225															.72		0.129640		0.198							
			alt 3 Sinthwelatt			50		.18		0.129640		-0.342															
Zero Treatme	nt Pawsan	yin/Nag	ayar	50	2	.16		0.129640	05	-0.362																	
Leaf_Colour_Date1	Zero Treatme Loca	al 1 Baygy Loca	al 2 Kyarp Lo	cal 3 Taung Salt 1	Pyimya Salt	2 IR-11T: Salt	3 Sinthw	Flodding 1 Sv Flod	ding 2 M Fl	odding 3 IR-84649.1	295,30																
Zero Treatment Pawsanyin	0	2	20	8	32	22	7	9	12	34																	
Local 1 Baygyar	2	0	18	6	30	20	5	7	10	32	_																
Local 2 Kyarpyan	20	18	0	12	12	2	13	12	8	14	_																
Local 3 Taungpyan	8	6	12	0	24	14	1	1	4	26																	
Salt 1 Pyimyanmarsein	32	30	12	24	0	10	25	23	20	3	-																
Salt 2 IR-11T225	22	20	2	14	10	0	15	14	10	12	_																
Salt 3 Sinthwelatt	7	5	13	1	25	15	0	2	5	27	_																
Flodding 1 Swarna Sub-1	9	7	12	1	23	14	2	0	4	26																	
Flodding 2 Mekyut	12	10	8	4	20	10	5	4	0	22																	

14 26

Date 2:

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	11.072727	9	0.270757	0.246061
Correction	11.319703	9	0.254430	0.251549
Multiplicity	108			

	Analysis of Variance Report
Page/Date/Time	2 07.10.2017 16:02:39
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Coulour_Date2

		Standard		
Count	Mean	Error	Effect	
500	0.656		0.656	
100	0.41	7.797436E-02	-0.246	
100	0.85	7.797436E-02	0.194	
100	0.41	7.797436E-02	-0.246	
100	1.02	7.797436E-02	0.364	
100	0.59	7.797436E-02	-0.066	
50	0.38	0.1775262	-0.276	
50	0.74	0.1775262	0.084	
50	1.12	0.1775262	0.464	
50	0.32	0.1775262	-0.336	
50	0.74	0.1775262	0.084	
50	0.78	0.1775262	0.124	
50	0.72	0.1775262	0.064	
50	0.72	0.1775262	0.064	
50	0.62	0.1775262	-0.036	
50	0.42	0.1775262	-0.236	
	500 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50	$\begin{array}{cccc} 500 & 0.656 \\ 100 & 0.41 \\ 100 & 0.85 \\ 100 & 0.41 \\ 100 & 1.02 \\ 100 & 0.59 \\ \hline \\ 50 & 0.38 \\ 50 & 0.74 \\ 50 & 0.74 \\ 50 & 0.32 \\ 50 & 0.74 \\ 50 & 0.78 \\ 50 & 0.72 \\ 50 & 0.72 \\ 50 & 0.62 \\ \hline \end{array}$	Count 500Mean 0.656Error1000.417.797436E-021000.857.797436E-021000.417.797436E-021001.027.797436E-021001.027.797436E-021000.597.797436E-02500.380.1775262500.740.1775262500.320.1775262500.740.1775262500.780.1775262500.720.1775262500.720.1775262500.720.1775262500.620.1775262	Count 500Mean 0.656ErrorEffect 0.6561000.417.797436E-02 7.797436E-02-0.2461000.857.797436E-02 7.797436E-020.1941000.417.797436E-02 7.797436E-02-0.2461001.027.797436E-02 7.797436E-02-0.2461000.597.797436E-02 7.797436E-02-0.066500.380.1775262 0.084-0.276500.380.1775262 0.084-0.276500.740.1775262 0.0840.084500.740.1775262 0.0840.084500.780.1775262 0.1240.064500.720.1775262 0.0640.064500.620.1775262 0.036-0.36

Friedman Test S	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	22.352727	9	0.007826	0.496727
Correction	22.766667	9	0.006742	0.505926
Multiplicity	90			

100

Page/Date/Time	2 07.10.2017 16:03:19
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date3

							S	tandard	1					
Term				Count	Me	an	E	rror		Effect				
All				500	1.6	4				1.64				
A: Farmer_Village														
1 2				100	1.4	4	9	526571	F-02	-0.2				
				100	2.2	-		526571		0.6				
3			100	1.7			526571		0.15					
4				100	1.8			526571		0.17				
5				100	0.9	2	9.	526571	E-02	-0.72				
B: Variety														
Flodding 1 Saw	anar sat-1			50	1.5	6	0.	213619	6	-0.08				
Flodding 2 Mekyut				50	1.7	6	0	213619	6	0.12				
Flodding 3 IR-84649.1295.30				50 1.84			0.2136196			0.2				
Local 1 Baygyar				50	1.3			213619		-0.34				
Local 2 Kyarpyan Local 3 Taungpyan				50	1.7		0.	213619	6	0.12				
				50	1.6	8	0.	213619	6	0.04				
Salt 1 Pyimyanmarsein Salt 2 IR-225 Salt 3 Sinthwelatt									2.36	6	0.2136196 0.2136196	6	0.72	
									1.1					
				50 50				.2136196	0.14					
			And a set of the set of the set of the set of the		1.7		_							
Zero Treatment			yar	50	1.1	8	0.	213619	6	-0.46				
Leaf_Colour_Date3	Zero Treatme Loca		al 2 Kyarp Lo	cal 3 Taung Salt 1	Pyimya Salt	2 IR-11T: Salt	3 Sinthw Flor	dding 1 Sv Flod	iding 2 M	Flodding 3 IR-84	649.1295.30			
Zero Treatment Pawsanyin	0	3	9	9	29	4	10	0	7	14				
local 1 Baygyar	3	0	11	11	31	2	13	3	9	16				
local 2 Kyarpyan	9	11	0	0	20	13	2	9	2	5	_			
local 3 Taungpyan	9	11	0	0	20	13	2	9	2	5				
alt 1 Pyimyanmarsein	29	31	20	20	0	33	19	29	22	15				
Salt 2 IR-11T225	4	2	13	13	33	0	14	4	11	18				
Salt 3 Sinthwelatt	10	13	2	2	19	14	0	10	- 4	4				
Flodding 1 Swarna Sub-1	0	3	9	9	29	4	10	0	7	14				
Flodding 2 Mekyut	7	9	2	2	22	11	4	7	0	7				
Flodding 3 IR-84649.1295.3	14	16	5	5	15	18	4	14	7	0				

Concordance

(W) 0.535758 0.556675

Date 4:						
Friedman Test S	ection					
	Friedman	Friedman				
Ties	(Q)	DF	Level			
Ignored	24.109091	9	0.004132			
Correction	25.050378	9	0.002916			

186

Multiplicity

Analysis of Variance Report

Page/Date/Time	2 07.10.2017 16:05:21
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date4

								Standard	ł																		
Term				Count	Me	an		Error		Effect																	
All				500	2.3	33				2.33																	
A: Farmer_Village				11.05																							
1				100	2.2	28		9.735388	8E-02	-0.05																	
2 3			100	2.7			9.735388		0.45																		
			100	2.0			9.735388		-0.25																		
4			100	2.5	17		9.735388		0.19																		
				_	-																						
5				100	1.9	99		9.735388	SE-02	-0.34																	
B: Variety																											
Flodding 1 Sawanar sat-1				50	0 2.48			0.238187	6	0.15																	
Flodding 2 Mekyut				50	2.18			0.2381876		-0.15																	
Flodding 3 IR-84649.1295.30			50	2.7	8		0.238187	6	0.45																		
Local 1 Baygyar				50	2.0			0.238187		-0.29																	
Local 2 Kyarpyan				50	2.2			0.238187		-0.05																	
									- Table - 1																		
Local 3 Taungpyan Salt 1 Pyimyanmarsein			50	2.4			0.238187		0.07																		
			narsein		narsein		marsein		imarsein		marsein		narsein		narsein		larsein		arsein				50 50	3.2			0.238187
Salt 2 IR-225	latt						1.9	92								0.238187	6	-0.41									
Salt 3 Sinthwell					2.3	2.36		0.238187	6	0.03																	
Zero Treatmen			ayar	50	1.6	52		0.238187	6	-0.71																	
eaf_Colour_Date4	Zero Treatme Loca	I 1 Baygy Loca	al 2 Kyarp Lo	cal 3 Taung Salt 1 I	yimya Salt	2 IR-11T2 Salt	3 Sinthw F	lodding 1 Sv Flod	lding 2 M F	lodding 3 IR-84649.	1295.																
ero Treatment Pawsanyin	0	3	13	21	36	5	18	19	11	26																	
ocal 1 Baygyar	3	0	10	18	33	2	15	16	8	23																	
ocal 2 Kyarpyan	13	10	0	8	23	9	5	6	2	13																	
ocal 3 Taungpyan	21	18	8	0	15	17	4	3	10	5																	
alt 1 Pyimyanmarsein	36	33	23	15	0	32	19	18	25	11	-																
alt 2 IR-11T225	5	2	9		32	0	13	14	7	21																	
alt 3 Sinthwelatt	18	15	5	4	19 18		0	1		8																	
lodding 1 Swarna Sub-1 lodding 2 Mekyut	19	16	2	10	18	14	1	8	8	7																	
		0	4	10	23	/	/	0	0	13																	

Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	12.981818	9	0.163431	0.288485
Correction	13.222222	9	0.152806	0.293827
Multiplicity	90			

Page/Date/Time	2 07.10.2017 16:07:39
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date5

			Standard	
Term	Count	Mean	Error	Effect
All	500	2.872		2.872
A: Farmer_Village				
1	100	2.7	8.656404E-02	-0.172
2	100	2.9	8.656404E-02	0.028
3	100	2.47	8.656404E-02	-0.402
4	100	3.41	8.656404E-02	0.538
5	100	2.88	8.656404E-02	0.008
B: Variety				
Flodding 1 Sawanar sat-1	50	2.86	0.2790579	-0.012
Flodding 2 Mekyut	50	2.72	0.2790579	-0.152
Flodding 3 IR-84649.1295.30	50	3	0.2790579	0.128
Local 1 Baygyar	50	3.08	0.2790579	0.208
Local 2 Kyarpyan	50	2.98	0.2790579	0.108
Local 3 Taungpyan	50	2.44	0.2790579	-0.432
Salt 1 Pyimyanmarsein	50	3.66	0.2790579	0.788
Salt 2 IR-225	50	2.98	0.2790579	0.108
Salt 3 Sinthwelatt	50	2.76	0.2790579	-0.112
Zero Treatment Pawsanyin/Nagayar	50	2.24	0.2790579	-0.632

Date 6: **Friedman Test Section** Friedman Prob Concordance Ties DF Level (W) (Q) Ignored 28.843636 9 0.000689 0.640970 Correction 0.000521 0.656894 29.560248 9 Multiplicity 120

Analysis of Variance Report

Page/Date/Time	2 07.10.2017 16:08:23
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date6

							S	tandard			
Term				Count	Me	an	E	rror		Effect	
All			500	2.9	08				2.908		
A: Farmer_Villa	ade			222		22				22122	
1	0			100	2.8	2	5	.838569	E-02	-0.088	
2				100	2.8	8	5	.838569	=-02	-0.028	
3				100	3.1			.838569		0.212	
4				100	2.7			.838569		-0.148	
							7				
5				100	2.9	0	5	.838569	=-UZ	0.052	
B: Variety											
Flodding 1 Sav	vanar sat-1			50	2.9	4	0	.1080946	6	0.032	
Flodding 2 Mel	cyut			50	2.5	6	0	.1080946	5	-0.348	
Flodding 3 IR-8	34649.129	5.30		50	3.2	4	0	.1080946	3	0.332	
Local 1 Baygya				50	2.6		0	0.1080946		-0.308	
Local 2 Kyarpy				50	2.7			.1080946		-0.168	
Local 3 Taungp				50			0.1080946		-0.208		
Salt 1 Pyimyan	marsein			50	3.7			.1080946		0.872	
	Salt 2 IR-225			50	2.8			.1080946		-0.028	
Salt 3 Sinthwelatt			50	3.0	8		.1080946		0.172		
Zero Treatmen			yar	50	2.5	6	0	.1080946	5	-0.348	
Leaf_Colour_Date6	Zero Treatme Loca	al 1 Baygy Loca	al 2 Kyarp L	ocal 3 Taung Salt 1	Pylmya Salt	2 IR-11T; Salt	3 Sinthw Fle	odding 1 Sv Flod	ding 2 M	Flodding 3 IR-8464	9.1295.30
Zero Treatment Pawsanyin	0	0	7	7	35	9	21	17	1	26	
Local 1 Baygyar	0	0	7	7	35	9	21	17	1	26	_
Local 2 Kyarpyan	7	7	0	0	28	3	15	11	7	20	
Local 3 Taungpyan	7	7	٥	0	28	3	15	11	7	20	
Salt 1 Pyimyanmarsein	35	35	28	28	0	26	14	18	35	9	
Salt 2 IR-11T225	9	9	3	3	26	0	12	8	10	17	
Salt 3 Sinthwelatt	21	21	15	15	14	12	0	4	22	5	
Flodding 1 Swarna Sub-1	17	17	11	11	18	8	4	D	18	9	
Flodding 2 Mekyut	1	1	7	7	35	10	22	18	0	27	
Flodding 3 IR-84649.1295.3	26	26	20	20	9	17	5	9	27	0	_

Date 7:

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	21.796364	9	0.009547	0.484364
Correction	22.907006	9	0.006409	0.509045
Multiplicity	240			

Analysis of Variance Report

Page/Date/Time	2 07.10.2017 16:11:15
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date7

								Standard			
Term				Count	Me	an		Error		Effect	
All				500	2.6	2				2.62	
A: Farmer_Villa	age										
1				100	2.6	7		5.159673	E-02	0.05	
2				100	2.5			5.159673		-0.07	
3				100	2.6			5.159673		0	
										-	
4				100	2.6			5.159673		0.05	
5				100	2.5	9	:	5.159673	E-02	-0.03	
B: Variety											
Flodding 1 Sav	vanar sat-	1		50	2.8	8	(0.116046		0.26	
Flodding 2 Mel				50	2.3		(0.116046		-0.3	
Flodding 3 IR-8		5 30		50				0.116046		0.2	
		0.00									
Local 1 Baygya				50				0.116046		-0.18	
Local 2 Kyarpy				50	2.6			0.116046		-0.02	
Local 3 Taungp	oyan			50 2.54		0.116046			-0.08		
Salt 1 Pyimyan	marsein			50 2.96		(0.116046		0.34		
Salt 2 IR-225				50	2.6	6	(0.116046		0.04	
Salt 3 Sinthwel	att			50	2.7			0.116046		0.14	
		in /bloom									
Zero Treatmen			iyar	50	2.2	2	(0.116046		-0.4	
Leaf Colour Date7	and the second second second	to be an and the same	al 2 Kyarp L	ocal 3 Taung Salt 1	Pyimya Salt	2 IR-11T; Salt	3 Sinthw F	lodding 1 Sv Flod	ding 2 M	Flodding 3 IR-84	649.1295.30
Zero Treatment Pawsanyin	0	16	12	16	33	20	24	29	5	27	- north
Local 1 Baygyar	16	0	- 4	1	17	5	8	14	11	12	
Local 2 Kyarpyan	12	4	0	4	21	8	12	17	8	15	
Local 3 Taungpyan	16	1	- 4	0	17	4	8	13	12	11	
Salt 1 Pyimyanmarsein	33	17	21	17	0	13	9	4	28	6	
Salt 2 IR-11T225	20	5	8	4	13	0	4	9	16	7	
Salt 3 Sinthwelatt	24	8	12	8	9	4	0	6	19	4	
Flodding 1 Swarna Sub-1	29	14	17	13	4	9	6	0	25	2	
Flodding 2 Mekyut	5	11	8	12	28	16	19	25	0	23	_
Flodding 3 IR-84649.1295.3	27	12	15	11	6	7	-4	2	23	0	

Date 8:

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	26.301818	9	0.001823	0.584485
Correction	28.932000	9	0.000665	0.642933
Multiplicity	450			

Analysis of Variance Report

Page/Date/Time	2 07.10.2017 16:13:30
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date8

Means and Effects Section

							S	tandard			
Term				Count	Me	an	E	rror		Effect	
All				500	3.6	51				3.61	
A: Farmer_Villa	age									202.0	
1	0			100	3.3	37	4.	353798E	-02	-0.24	
2				100	3.3			353798E		-0.24	
3				100	3.9			353798E		0.31	
4				100	3.6			353798E		0.06	
5				100	3.7			353798E		0.11	
				100	5.1	2	4.	.3337900	-02	0.11	
B: Variety	think share			50						0.07	
Flodding 1 Sav		1		50	3.8		T.	267626E		0.27	
Flodding 2 Mel	kyut			50	3.1		9.	.267626E	-02	-0.51	
Flodding 3 IR-8	34649.129	5.30		50	3.6		9.	9.267626E-02		-0.01	
Local 1 Baygya	ar			50	3.5		9.	9.267626E-02			
Local 2 Kyarpy				50	3.6	32		267626E		0.01	
Local 3 Taung				50	3.34		9.267626E-02			-0.27	
Salt 1 Pyimyan				50	3.86		9.267626E-02			0.25	
Salt 2 IR-225	inaisein			50			9.267626E-02			0.19	
Salt 3 Sinthwel				50	3.92			9.267626E-02		0.31	
Zero Treatment Pawsanyin/Nagayar		50	3.4	8	9.	267626E	-02	-0.13			
AB. Earmor Vi Leaf Colour Date8			al 2 Kyarp L	ocal 3 Tauni Salt 1	Pylmya Salt	2 IR-11T; Salt	3 Sinthw Flor	dding 1 Sv Flodd	ing 2 M	Flodding 3 IR-846	49.1295.30
Zero Treatment Pawsanyin	0	2	6	8	14	13	20	18	17	7	
Local 1 Baygyar	2	0	8	7	16	14	21	19	15	8	
Local 2 Kyarpyan	6	8	0	14	8	7	14	12	23	1	
Local 3 Taungpyan	8	7	14	0	22	21	28	26	9	15	
Salt 1 Pylmyanmarsein	14	16	8	22	0	2	б	4	31	8	
Salt 2 IR-11T225	13	14	7	21	2	0	7	5	29	- 6	
Salt 3 Sinthwelatt	20	21	14	28	6	7	0	2	36	13	
Flodding 1 Swarna Sub-1	18	19	12	26	4	5	2	0	34	11	
Flodding 2 Mekyut	17	15	23	9	31	29	36	34	0	23	
Flodding 3 IR-84649.1295.3(7	8	1	15	8	6	13	11	23	0	

Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	11.978182	9	0.214542	0.266182
Correction	12.230198	9	0.200641	0.271782
Multiplicity	102			

Page/Date/Time	2 07.10.2017 16:15:11
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date9

			Standard	
Term	Count	Mean	Error	Effect
All	500	2.856		2.856
A: Farmer_Village				
1	100	2.64	5.601587E-02	-0.216
2	100	3.08	5.601587E-02	0.224
3	100	3.11	5.601587E-02	0.254
4	100	2.8	5.601587E-02	-0.056
5	100	2.65	5.601587E-02	-0.206
B: Variety				
Flodding 1 Sawanar sat-1	50	3.02	0.1377356	0.164
Flodding 2 Mekyut	50	2.48	0.1377356	-0.376
Flodding 3 IR-84649.1295.30	50	2.94	0.1377356	0.084
Local 1 Baygyar	50	2.82	0.1377356	-0.036
Local 2 Kyarpyan	50	2.88	0.1377356	0.024
Local 3 Taungpyan	50	2.76	0.1377356	-0.096
Salt 1 Pyimyanmarsein	50	3.06	0.1377356	0.204
Salt 2 IR-225	50	3.02	0.1377356	0.164
Salt 3 Sinthwelatt	50	3	0.1377356	0.144
Zero Treatment Pawsanyin/Nagayar	50	2.58	0.1377356	-0.276

Date 10:

ĩ

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	16.843636	9	0.051222	0.374303
Correction	17.262112	9	0.044766	0.383602
Multiplicity	120			

Analysis of Variance Report

Page/Date/Time	2 07.10.2017 16:16:04
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date10

								Standard	1	
Term				Count	Me	ean		Error		Effect
All				500	2.9	936				2.936
A: Farmer_Villa	ade									2.000
1	9-			100	3.	12		5.024385	E-02	0.184
2				100	3.			5.024385		0.194
3				100	2.8			5.024385		-0.056
4				100	2.0			5.024385		-0.276
5				100	2.8	39		5.024385	E-02	-0.046
B: Variety										
Flodding 1 Sav	vanar sat-	1		50	2.8	34		0.207776	6	-0.096
Flodding 2 Mel				50	2.4	18		0.207776	6	-0.456
Flodding 3 IR-8		5 30		50	3.4			0.207776		0.504
Local 1 Baygya		0.00		50	2.			0.207776	-	-0.236
Local 2 Kyarpy				50	2.9			0.207776	-	0.024
Local 3 Taungp				50	2.			0.207776		-0.196
Salt 1 Pyimyan	marsein			50	3.6	54		0.207776	6	0.704
Salt 2 IR-225				50	2.8	34		0.207776	6	-0.096
Salt 3 Sinthwel	att			50	3.0			0.207776	6	0.104
Zero Treatmen		in/Mag	wor	50	2.0			0.207776		-0.256
AB: Farmer Vi			ayai	50	2.0	00		0.201110	0	-0.230
Leaf_Colour_Date10			al 2 Kyarp Lo	ocal 3 Taung Salt 1	Pyimya Salt	2 IR-11T2 Salt	3 Sinthw	Flodding 1 Sv Flodd	ding 2 M F	lodding 3 IR-84649.1295.3
Zero Treatment Pawsanyin	0	2	11	4	28	6	10	8	1	22
Local 1 Baygyar	2	0	9	2	26	4	8	6	1	20
Local 2 Kyarpyan	11	9	0	7	18	5	1	3	10	12
Local 3 Taungpyan	-4	2	7	0	25	2	7	4	3	19
Salt 1 Pyimyanmarsein	28	26	18	25	0	23	18	21	27	6
Salt 2 IR-11T225	6	4	5	2	23	0	5	2	5	17
Salt 3 Sinthwelatt	10	8	1	7	18	5	0	3	9	12
Flodding 1 Swarna Sub-1	8	6	3	4	21	2	3	0	7	15
Flodding 2 Mekyut	1	1	10	3	27	5	9	7	0	21
Flodding 3 IR-84649.1295.3	22	20	12	19	6	17	12	15	21	0

Date 11:

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	29.040000	9	0.000638	0.645333
Correction	29.432432	9	0.000548	0.654054
Multiplicity	66			

Analysis of Variance Report

Page/Date/Time	2 07.10.2017 16:17:07
Database	Z:\Users\Benjamin\Documents\ ial\PH+T+LC-Data-Boyargyi.S0
Response	Leaf_Colour_Date11

Term Count Mean Error E	ffect
All 500 2.944 2	.944
A: Farmer_Village	
가는 것이네. 정말 것이 구나에 가지 않는 것이 없는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것이 없 않는 것이 없는 것이 없다. 것이 없는	.326
2 100 3.19 5.509588E-02 0	.246
	.006
	0.344
	0.234
B: Variety	
	.176
- 이상에 1976년 1월 21일 51일 1월 21일 1월 2	0.444
	.316
이 그 가게 잘 한 것은 것 같이 한 것 같이 있다. 이 가지 않는 것이 가지 않는 것은 것을 가지 않는 것을 것 같아. 이 가지 않는 것 않는 것 같아. 이 가지 않는 것 같아. 이 가 있는 것 않는 것 같아. 이 가 있는 것 같아. 이 가 것 않아. 이 가 있는 것 같아. 이 이 이 이 가 있는 것 같아. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	0.244
	.156
	0.344
	.656
	.176
	0.084
	0.364
Leaf_Colour_Date11 Zero Treatme Local 1 Baygy Local 2 Kyarp Local 3 Taung Salt 1 Pyimya Salt 2 IR-11T: Salt 3 Sinthw Flodding 1 Sv Flodding 2 M Floddi	ing 3 IR-84649.1295.30
Zero Treatment Pawsanyin 0 4 20 0 31 21 10 23 3	25
Local 1 Baygyar 4 0 16 4 27 17 6 19 7	21
Local 2 Kyarpyan 20 16 0 20 11 1 11 3 23 Local 3 Taungoyan 0 4 20 0 31 21 10 23 3	5

acto trabatter attoatt					7.7					
Local 1 Baygyar	4	0	16	4	27	17	6	19	7	21
Local 2 Kyarpyan	20	16	0	20	11	1	12	3	23	5
Local 3 Taungpyan	0	4	20	0	31	21	10	23	3	25
Salt 1 Pyimyanmarsein	31	27	11	31	0	11	22	9	34	7
Salt 2 IR-11T225	21	17	1	21	11	0	11	2	23	4
Salt 3 Sinthwelatt	10	6	11	10	22	11	0	13	12	15
Flodding 1 Swarna Sub-1	23	19	3	23	9	2	13	0	25	2
Flodding 2 Mekyut	3	7	23	3	34	23	12	25	0	27
Flodding 3 IR-84649.1295.3(25	21	s	25	7	4	15	2	27	0
and the second se										

Zokekali: Summary: Weeks after Transplanting	Significance of Variety (Friedman Test, 8 Factors, 5 Blocks)	Significant differences (Wilcoxon- Wilcox Test n=5 k=8)
1	No (Q= 13.29, p=0.07)	
2	No (Q= 8.08, p=0.32)	
3	Yes (Q= 14.14, p=0.05)	
4	Yes (Q= 14.88, p=0.04)	
5	Yes (Q= 21.54, p<0.01)	L3 <f1< td=""></f1<>
6	Yes (Q= 23.44, p<0.01)	L3 <f1< td=""></f1<>
7	Yes (Q= 22.97, p<0.01)	0T, L1, L3 <f1< td=""></f1<>
8	Yes (Q= 14.53, p=0.04)	
9	No (Q= 10.79, p=0.15)	
10	Yes (Q= 27.76, p<0.01)	S2<0T, L1, L2
11	No (Q= 13.57, p=0.06)	

Friedman Test Se			1000	
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	12.633333	7	0.081562	0.360952
Correction	13.298246	7	0.065167	0.379950
Multiplicity	126			
			lysis of Variance F	Report
Page/Date/Time	2 22.01.2018 1	2:36:30		
Database	Z:\Users\Benjami	n\Documents	s\ I\PH+T+LC+G-	Data-Zokekali.S0
Response	Leaf Colour Date	e1		

Means and Effects Section				
			Standard	
Term	Count	Mean	Error	Effect
All	400	2.645		2.645
A: Farmer No				
1 -	80	2.625	5.898446E-02	-0.02
2	80	2.8875	5.898446E-02	0.2425
2 3	80	2.35	5.898446E-02	-0.295
4	80	2.65	5.898446E-02	0.005
4 5	80	2.7125	5.898446E-02	0.0675
B: Variety				
Flodding 1 Swarna Sub-1	50	2.86	9.671386E-02	0.215
Local 1 Baygyar	50	2.64	9.671386E-02	-0.005
Local 2 Kyarpyan	50	2.68	9.671386E-02	0.035
Local 3 Taungpyan	50	2.5	9.671386E-02	-0.145
Salt 1 Pyimyanmarsein	50	2.4	9.671386E-02	-0.245
Salt 2 IR-11T255	50	2.68	9.671386E-02	0.035
Salt 3 Sinthwelatt	50	2.82	9.671386E-02	0.175
Zero Treatment Pawsanyin	50	2.58	9.671386E-02	-0.065
AD: Compan No Variati				
Date 2:				
Friedman Test Section				
Friedma	in	Prob	Concor	dance

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	7.800000	7	0.350560	0.222857
Correction	8.088889	7	0.324821	0.231111
Multiplicity	90			

Analysis of Variance Report

	Analysis of Variance Report
Page/Date/Time	2 22.01.2018 12:37:26
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Coulour_Date2

			Standard	
Term	Count	Mean	Error	Effect
All	400	2.5925		2.5925
A: Farmer No				
1 -	80	2.6	6.452282E-02	0.0075
2	80	2.575	6.452282E-02	-0.0175
3	80	2.45	6.452282E-02	-0.1425
4	80	2.6375	6.452282E-02	0.045
5	80	2.7	6.452282E-02	0.1075
B: Variety				
Flodding 1 Swarna Sub-1	50	2.54	0.1404584	-0.0525
Local 1 Baygyar	50	2.58	0.1404584	-0.0125
Local 2 Kyarpyan	50	2.72	0.1404584	0.1275
Local 3 Taungpyan	50	2.58	0.1404584	-0.0125
Salt 1 Pyimyanmarsein	50	2.36	0.1404584	-0.2325
Salt 2 IR-11T255	50	2.62	0.1404584	0.0275
Salt 3 Sinthwelatt	50	2.66	0.1404584	0.0675
Zero Treatment Pawsanyin	50	2.68	0.1404584	0.0875

Date 3:

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	13.466667	7	0.061522	0.384762
Correction	14.140000	7	0.048747	0.404000
Multiplicity	120			

Analysis of Variance Report

Page/Date/Time	2 22.01.2018 12:37:45
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Colour_Date3

T					1111		indard		
Term			Cou		lean	Err	or	Effec	
All			400	2	.8275			2.827	S
A: Farmer_No			1.0		100			S 6 6	121
1			80		.675		94288E-0	-	
2			80	2	.8	6.2	94288E-0	0.02	75
3			80	2	.6	6.2	94288E-0	2 -0.22	75
4			80	2	9375	6.2	94288E-0	0.11	
5			80	3	125	6.2	94288E-0	0.297	5
B: Variety									
Flodding 1 Swarn	a Sub-1		50	3	.16	0.1	510203	0.332	5
Local 1 Baygyar			50		.6		510203	-0.22	
Local 2 Kyarpyan			50		.7		510203	-0.12	
Local 3 Taungpya			50		.66		510203	-0.16	
Salt 1 Pyimyanma			50		.64		510203	-0.18	
Salt 2 IR-11T255					.18		510203	0.352	
			50						
Salt 3 Sinthwelatt			50		.92		510203	0.092	
Zero Treatment P			50	2	.76	0.1	510203	-0.06	/5
Leaf_Colour_Date3	Zero Treatme	Local 1 Baygy	Local 2 Kyarp	Local 3 Taung	Salt 1 Pyimya	Salt 2 IR-11T	Salt 3 Sinthw	Flodding 1 Sw	/arna Sub-i
Zero Treatment Pawsanyin	0	10	4	6	4	11	7	10	
Local 1 Baygyar	10	0	6	4	6	21	16	19	
Local 2 Kyarpyan	4	6	0	2	0	15	11	14	
Local 3 Taungpyan	6	4	2	0	2	17	12	15	
Salt 1 Pyimyanmarsein	4	6	0	2	0	15	11	14	
Salt 2 IR-11T225	11	21	15	17	15	0	5	2	
Salt 3 Sinthwelatt	7	16	11	12	11	5	0	3	
Flodding 1 Swarna Sub-1	10	19	14	15	14	2	3	0	

Date 4:				
Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	14.450000	7	0.043733	0.412857
Correction	14.875000	7	0.037636	0.425000
Multiplicity	72			

Page/Date/Time	2 22.01.2018 12:38:01	
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0	
Response	Leaf_Colour_Date4	

2				12.		Stand Error	ard			
Term			Count		Mean			Effect		
All			400	3.36				3.36		
A: Farmer_No										
1			80	3.08	75	6.0839	904E-02	-0.2725		
2			80	3.1		6.0839	04E-02	-0.26		
3			80	2.97	5	6.0839	04E-02	-0.385		
4			80	3.92	5		04E-02			
5			80	3.71	25	6.0839	04E-02	0.3525		
B: Variety						100 C C C C C C C C C C C C C C C C C C	10.12	Circles States		
Flodding 1 Swarna	a Sub-1		50	3.92		0.1293	3804	0.56		
Local 1 Baygyar			50	3.1		0.1293		-0.26		
Local 2 Kyarpyan			50	3.2			0.1293804		-0.16	
Local 3 Taungpya	n		50	3.08		0.1293804		-0.28		
Salt 1 Pyimyanma			50	3.22		0.1293		-0.14		
Salt 2 IR-11T255	in ocim		50	3.78		0.1293		0.42		
Salt 3 Sinthwelatt			50	3.46		0.1293		0.1		
				3.12		0.1293804				
Zero Treatment Pa AB: Farmer No.V			50	3.12		0.1293	0004	-0.24		
Leaf_Colour_Date4	Zero Treatme Loc							-	Sub-1	
Zero Treatment Pawsanyin	0	3	3	2	2	18	11	15		
Local 1 Baygyar	3	0 6	6	1	5	20	14	18		
Local 2 Kyarpyan	2	1	0	0	1	15 20	8 13	12 17		
Local 3 Taungpyan Salt 1 Pyimyanmarsein	2	5	1	4	0	16	9	17		
Salt 2 IR-11T225	18	20	15	20	16	0	7	3		
Salt 3 Sinthwelatt	11	14	8	13	9	7	0	4		
Flodding 1 Swarna Sub-1	15	14	12	17	13	3	4	0		

Date 5:

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	21.133333	7	0.003578	0.603810
Correction	21.543689	7	0.003044	0.615534
Multiplicity	48			

Analysis of Variance Report

Page/Date/Time	2 22.01.2018 12:38:22
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Colour_Date5

Means and Effects Section

						Stand	ard	
Term			Count	Mea	n	Error		Effect
All			400	3.19	5			3.195
A: Farmer_No								
1			80	3.27	5	6.135	054E-02	0.08
2			80	3.05			054E-02	-0.145
3			80	3.18			054E-02	-0.0075
4			80	3.13			054E-02	-0.0575
5			80	3.32			054E-02	0.13
B: Variety				0.01		0.100		0.10
Flodding 1 Swarn	a Sub-1		50	3.6		8 776	999E-02	0.405
Local 1 Baygyar			50	3.12			999E-02	-0.075
Local 2 Kyarpyan			50	3.16			999E-02	-0.035
Local 3 Taungpya			50	2.92			999E-02	-0.275
Salt 1 Pyimyanma	arsein		50	3.3			999E-02	0.105
Salt 2 IR-11T255			50	3.4			999E-02	0.205
Salt 3 Sinthwelatt			50	3		8.776	999E-02	-0.195
Zero Treatment Part AB: Farmer No V			50	3.06	6	8.776	999E-02	-0.135
Leaf_Colour_Date5	Zero Treatme Loc	al 1 Baygy Loo	cal 2 Kyarp Local 3	Taung Salt	1 Pyimya Salt	2 IR-11T2 Salt	3 Sinthw Floo	ding 1 Swarna Sub-
Zero Treatment Pawsanyin	0	3	12	9	11	13	3	21
Local 1 Baygyar	3	0	9	12	9	10	6	18
Local 2 Kyarpyan	12	9	0	21	1	1	15	9
Local 3 Taungpyan	9	12	21	0	20	22	6	30
Salt 1 Pyimyanmarsein	11	9	1	20	0	2	14	10
Salt 2 IR-11T225	13	10	1	22	2	0	16	8
Salt 3 Sinthwelatt	3	6	15	6	14	16	0	24
Flodding 1 Swarna Sub-1	21	18	9	30	10	8	24	0

Friedman Test S	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	22.100000	7	0.002441	0.631429
Correction	23.439394	7	0.001429	0.669697
Multiplicity	144			

Page/Date/Time	2 22.01.2018 12:38:32
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Colour_Date6

Term All	Count 400	Me 3.1		Stand Error		Effect 3.19		
A: Farmer_No			~~					0.0475
1			80		375		298E-02	
2			80		625		298E-02	
3			80	3.1	5	4.617	298E-02	-0.04
4			80	3.1	875	4.617	298E-02	-0.0025
5			80	3.2	125	4.617	298E-02	0.0225
B: Variety								
Flodding 1 Swarr	na Sub-1		50	3.6	4	0.074	7854	0.45
Local 1 Baygyar			50	3.0		0.074		-0.13
Local 2 Kyarpyan		50	3.0		0.074		-0.17	
Local 3 Taungpya				50 2.94	0.0747854		-0.25	
Salt 1 Pyimyanm			50	3.2		0.074		0.05
Salt 2 IR-11T255			50 3.38		0.0747854		0.19	
				3.26		0.0747854		0.07
Salt 3 Sinthwelat			50					
Zero Treatment F			50	2.9	8	0.074	7854	-0.21
eaf_Colour_Date6	Zero Treatme	Local 1 Baygy Lo	cal 2 Kyarp Local 3	Taung Salt	1 Pyimya Salt	2 IR-11T2 Salt	3 Sinthw Flod	ding 1 Swarna Sub-1
ero Treatment Pawsanyin	0	7	2	4	15	20	13	24
ocal 1 Baygyar	7	0	5	10	9	13	7	17
ocal 2 Kyarpyan	2	5	0	6	13	18	11	22
ocal 3 Taungpyan	4	10	6	0	19	23	17	27
Salt 1 Pyimyanmarsein	15	9	13	19	0	5	2	9
Salt 2 IR-11T225	20	13	18	23	5	0	7	4
Salt 3 Sinthwelatt	13	7	11	17	2	7	0	11
Flodding 1 Swarna Sub-1	24	17	22	27	9	4	11	0

Date 7:

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	21.716667	7	0.002842	0.620476
Correction	22.974811	7	0.001722	0.656423
Multiplicity	138			

Analysis of Variance Report

Page/Date/Time	2 22.01.2018 12:38:42
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Colour_Date7

Means and Effects Section

						Stan	dard	
Term			Count	Me	an	Erro		Effect
All			400	3.1	7			3.17
A: Farmer No								
1 -			80	3.3	125	4.887	626E-02	0.1425
2			80	3.2	375	4.887	626E-02	0.0675
3			80		625		626E-02	
4			80	2.8			626E-02	
5			80		875		626E-02	
B: Variety								
Flodding 1 Swarr	na Sub-1		50	3.6		8 811	519E-02	0.43
Local 1 Baygyar			50	2.9			519E-02	-0.23
Local 2 Kyarpyar			50	3.0			519E-02	-0.11
Local 3 Taungpyan			50	3.0			519E-02	-0.13
Salt 1 Pyimyanm			50	3.1			519E-02	
Salt 2 IR-11T255			50					0.09
				3.26 3.32				
Salt 3 Sinthwelat			50					0.15
Zero Treatment F AB: Farmer No.			50	2.9	0	8.811	519E-02	-0.21
Leaf_Colour_Date7		al 1 Baygy Loo	al 2 Kyarp Local 3	Taung Sal	t 1 Pyimya Salt	2 IR-11T2 Salt	3 Sinthw Flod	ding 1 Swarna Sub-:
Zero Treatment Pawsanyin	0	2	8	2	13	18	20	26
Local 1 Baygyar	2	0	7	1	12	17	18	25
Local 2 Kyarpyan	8	7	0	6	5	10	12	18
Local 3 Taungpyan	2	1	6	0	11	16	18	24
Salt 1 Pyimyanmarsein	13	12	5	11	0	5	7	13
Salt 2 IR-11T225	18	17	10	16	5	0	2	8
Salt 3 Sinthwelatt	20	18	12	18	7	2	0	7
Flodding 1 Swarna Sub-1	26	25	18	24	13	8	7	0

Friedman Test S			Prob	Concordona
Ties	Friedman (Q)	DF	Level	Concordance (W)
Ignored	12.700000	7	0.079764	0.362857
Correction	14.534060	7	0.042458	0.415259
Multiplicity	318			

Page/Date/Time	2 22.01.2018 12:38:57
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Colour_Date8

Term All	All Control of the second s				ean 84	Sta Erro	ndard or	Effect 2.84	
A: Farmer No									
1 -			80	2.	85	5.21	0833E-0	2 0.01	
2			80	2.	7625	5.21	0833E-0	2 -0.077	5
3			80		9375		0833E-0		
4			80		825		0833E-0		
5			80		825		0833E-0		
B: Variety			00	-	ULU	0.2		2 0.010	
	a Sub-1		50	3	06	0.08	30689	0.22	
Flodding 1 Swarna Sub-1 Local 1 Baygyar			50		2.86		0.080689		
Local 2 Kyarpyan			50		2.78		0.080689		
				50 2.82			0.080689		
Local 3 Taungpya			50 2.64			0.080689			
Salt 1 Pyimyanma	arsem								
Salt 2 IR-11T255			50		2.92		0.080689		
Salt 3 Sinthwelatt			50		2.78		0.080689		
Zero Treatment P	awsanyin		50	2.	86	0.08	30689	0.02	
Leaf Colour Date8	Zero Treatme	Local 1 Baygy	Local 2 Kyarp	Local 3 Taung	Salt 1 Pyimya	Salt 2 IR-11T2	Salt 3 Sinthw	Flodding 1 Sw	arna Sub-1
Zero Treatment Pawsanyin	0	1	6	3	8	4	7	15	
Local 1 Baygyar	1	0	5	2	7	5	7	16	
Local 2 Kyarpyan	6	5	0	3	2	10	2	21	
Local 3 Taungpyan	3	2	3	0	5	7	5	18	
Salt 1 Pyimyanmarsein	8	7	2	5	0	12	1	23	
Salt 2 IR-11T225	4	5	10	7	12	0	11	11	
Salt 3 Sinthwelatt	7	7	2	5	1	11	0	22	
Flodding 1 Swarna Sub-1	15	16	21	18	23	11	22	0	

Date 9:				
Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	10.200000	7	0.177520	0.291429
Correction	10.790932	7	0.148002	0.308312
Multiplicity	138			

Page/Date/Time	2 22.01.2018 12:39:13
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Colour_Date9

			Standard	
Term	Count	Mean	Error	Effect
All	400	2.6825		2.6825
A: Farmer_No				
1	80	2.8375	6.479133E-02	0.155
2	80	2.6375	6.479133E-02	-0.045
3	80	2.65	6.479133E-02	-0.0325
4	80	2.85	6.479133E-02	0.1675
5	80	2.4375	6.479133E-02	-0.245
B: Variety				
Flodding 1 Swarna Sub-1	50	2.8	0.1145956	0.1175
Local 1 Baygyar	50	2.9	0.1145956	0.2175
Local 2 Kyarpyan	50	2.76	0.1145956	0.0775
Local 3 Taungpyan	50	2.62	0.1145956	-0.0625
Salt 1 Pyimyanmarsein	50	2.42	0.1145956	-0.2625
Salt 2 IR-11T255	50	2.46	0.1145956	-0.2225
Salt 3 Sinthwelatt	50	2.7	0.1145956	0.0175
Zero Treatment Pawsanyin	50	2.8	0.1145956	0.1175

Date 10:				
Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	26.633333	7	0.000388	0.760952
Correction	27.756824	7	0.000243	0.793052
Multiplicity	102			

Page/Date/Time	2 22.01.2018 12:39:29
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Colour_Date10

						Standa	rd		
Term			Count	Mear	i i	Error		Effect	
All			400	2.902	25			2.9025	
A: Farmer No									
1 -			80	3.412	25	6.1038	47E-02	0.51	
2			80	2.687		6.1038	47E-02	-0.215	
3			80	2.787	5	6.1038			
4			80	2.912		6.1038			
5			80	2.712		6.1038			
B: Variety			00			0.1000	11 - 02	0.10	
Flodding 1 Swarn	a Sub-1		50	2.4		0.1761	087	-0.5025	
Local 1 Baygyar			50	3.6		0.1761		0.6975	
Local 2 Kyarpyan			50	3.48		0.1761		0.5775	
Local 3 Taungpya			50	3.16		0.1761		0.2575	
Salt 1 Pyimyanma	arsein		50	2.22		0.1761		-0.6825	
Salt 2 IR-11T255			50 2.1			0.1761087		-0.8025	
Salt 3 Sinthwelatt			50	2.84		0.1761		-0.0625	
Zero Treatment Pa			50	3.42		0.1761	087	0.5175	
Leaf_Colour_Date10		ocal 1 Baygy Lo	cal 2 Kyarp Loca	I 3 Taung Salt	1 Pyimya Sa	t 2 IR-11T2 Salt	3 Sinthw F	lodding 1 Swar	na Sub-1
Zero Treatment Pawsanyin	0	4	3	9	20	24	8	18	
ocal 1 Baygyar	4	0	1	12	24	28	11	22	_
Local 2 Kyarpyan	3	1	0	11	23	27	10	21	
ocal 3 Taungpyan	9	12	11	0	12	16	1	10	
Salt 1 Pyimyanmarsein	20	24	23	12	0	4	13	2	
Salt 2 IR-11T225	24	28	27	16	4	0	17	6	
Salt 3 Sinthwelatt	8	11	10	1	13	17	0	11	
Flodding 1 Swarna Sub-1	18	22	21	10	2	6	11	0	

Date 11:				
Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	13.183333	7	0.067766	0.376667
Correction	13.571078	7	0.059358	0.387745
Multiplicity	72			

Page/Date/Time	2 22.01.2018 12:39:40
Database	Z:\Users\Benjamin\Documents\ I\PH+T+LC+G-Data-Zokekali.S0
Response	Leaf_Colour_Date11

			Standard	
Term	Count	Mean	Error	Effect
All	400	3.4125		3.4125
A: Farmer No				
1 -	80	3.4875	6.648412E-02	0.075
2	80	3.4375	6.648412E-02	0.025
3	80	3.475	6.648412E-02	0.0625
4	80	3.2875	6.648412E-02	-0.125
5	80	3.375	6.648412E-02	-0.0375
B: Variety				
Flodding 1 Swarna Sub-1	50	3.8	0.1130897	0.3875
Local 1 Baygyar	50	3.38	0.1130897	-0.0325
Local 2 Kyarpyan	50	3.38	0.1130897	-0.0325
Local 3 Taungpyan	50	3.16	0.1130897	-0.2525
Salt 1 Pyimyanmarsein	50	3.3	0.1130897	-0.1125
Salt 2 IR-11T255	50	3.46	0.1130897	0.0475
Salt 3 Sinthwelatt	50	3.42	0.1130897	0.0075
Zero Treatment Pawsanyin	50	3.4	0.1130897	-0.0125

Statistical Analysis Harvest

Summary Number of Plants and Plant Height Boyargyi						
Nr. Hills	Yes (F9,36= 16.44, p<0.01)	F1, F2<0T, L1, L2, S3 F3, S2<0T, L3 S1 <l3< td=""></l3<>				
Plant Height	Yes (Q= 41.99, p<0.01)	F1<0T, F2, L1, L3 S2 <f2, l1<br="">F3<f2< td=""></f2<></f2,>				
Zokekali						
Nr. Hills	No (Q= 7.71, p= 0.36)					
Plant Height	Yes (Q=31.47, p<0.01)	S2 < L1, L2, L3 S1 < L1, L3				
Number of Tillers and Panicles Boyargyi						
Nr. Tillers	Yes (Q=19.35, p=0.02)					
Nr. Panicles WP	Yes (Q= 21.66, p<0.01)					
Nr Panicles SP	Yes (Q= 20.34, p=0.02)					
Panicles per Tiller WP	Yes (Q= 23.44, p<0.01)	F2 <l1< td=""></l1<>				
Zokekali						
Nr Tillers	Yes (Q=21.23, p<0.01)	S3 <f1< td=""></f1<>				
Nr Panicles WP	Yes (Q=20.01, p<0.01)	S2 <f1< td=""></f1<>				
Nr. Panicles SP	Yes (Q= 19.80, p<0.01)	L1, S2 <f1< td=""></f1<>				
Panicles per Tiller WP	Yes (Q= 22.33, p<0.01)	F1<0T, L1, S3				
Panicle Length and Number of S Boyargyi	Spikelets					
Panicle Length	Yes (Q= 29.90, p<0.01)	F1, L3 <f2, s3<="" td=""></f2,>				
Number of Spikelets WP	Yes (+= 28.81, p<0.01)	F1 <f2, s1,="" s3<="" td=""></f2,>				
Number of Spikelets SP	Yes (Q= 28.41, p<0.01)	F1 <f2, s1,="" s3<="" td=""></f2,>				

ZUKCKUII		
Panicle Length	Yes (Q= 28.47, p<0.01)	S2 <f1, s3<="" td=""></f1,>
		S1 < S3
Number of Spikelets WP	Yes (Q= 26.33, p<0.01)	\$1, \$2 <l2, \$3<="" td=""></l2,>
Number of Spikelets SP	Yes (Q= 26.73, p<0.01)	S1, S2 <l2, s3<="" td=""></l2,>
Yield		
Boyargyi		
Basket/Acre WP	Yes (F9,36= 10.52, p<0.0)1) S2 <l2, l3,="" s3<="" td=""></l2,>
		F1, F3, S1 < L2, S3
		F2 <s3< td=""></s3<>
Basket/Acre SP	Yes (F9,36= 5.19, p<0.01) S2 <s3< td=""></s3<>
t/ha WP	Yes (Q=25.23, p<0.01)	S2 <s3< td=""></s3<>
t/ha SP	Yes (F9, 36= 4.42, p<0.0	1) S2 <s3< td=""></s3<>
Zokekali		
Basket/Acre WP	Yes (Q= 28.87, p<0.01)	F1, S2< 0T, L2
,		\$1 <l2< td=""></l2<>
Basket/Acre SP	Yes (F7,28= 10.32, p<0.0)1) F1, S1, S2 <l2, s3<="" td=""></l2,>
t/ha WP	Yes (Q= 38.90, p<0.01)	S2<0T, L2
t/ha SP	Yes (Q= 38.71, p<0.01)	S2 <l2, s3<="" td=""></l2,>
,	, ,) ,	,

Nr. Hills:

Boyargyi

			Analysis of Varia	ance Repo	ort		
Page/Date/Time	1 18.0	1.2018 12:05:18					
Database Response	Comolo	Plot Nr Hills					
Response	Sample	PIOL INI_HIIIS					
Analysis of Varia	nce Table						
Source		Sum of	Mean		Prob	Power	
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)	
A: Farmer_No B: Variety	4	1309.8 4477.3	327.45 497.4778	16.44	0.000000*	1.000000	
AB	36	1089.4	30.26111	10.44	0.000000	1.000000	
S	0	0	00,20111				
Total (Adjusted) Total	49 50	6876.5					
* Term significant a	at alpha = 1	0.05					
Means and Eff	ects Se	ection					
						Standard	
Term			Count	Me	an	Error	Effec
All			50	63.	7		63.7
A: Farmer No							
6			10	67.	4	0	3.7
7			10	65.	6	0	1.9
В			10	67.	9	0	4.2
9			10	63.	7	0	0
10			10	53.	9	0	-9.8
B: Variety							
Flodding 1 Swa	arna Sub	p-1	5	47		2.460126	-16.7
Flodding 2 Mek	vut		5	54.	6	2.460126	-9.1
Flodding 3 IR-8	4649.12	295.30	5	57.	2	2,460126	-6.5
Local 1 Baygya			5	67.	2	2,460126	3.5
Local 2 Kyarpy			5	71.	4	2,460126	7.7
Local 3 Taungp	van		5	80		2.460126	16.3
Salt 1 Pyimyan			5	61.	6	2.460126	-2.1
Salt 2 IR-11T25			5	59		2.460126	-4.7
Salt 3 Sinthwel			5	64		2.460126	0.3
Zero Treatment		nvin	5	75		2.460126	11.3
AR Former No			3	15		2.400120	11.5

Scheffe's Multiple-Comparison Test

Response: Sample_Plot_Nr_Hills Term B: Variety

Alpha=0.050 Error Term=AB DF=36 MSE=30.26111 Critical Value=4.4015

		60.000	Different From
Group	Count	Mean	Groups
Flodding 1 Swarna Si	ub-1		and a second second second second second second
	5	47	Salt 3 Sinthwelatt, Local 1 Baygyar Local 2 Kyarpyan, Zero Treatment Pawsanyin Local 3 Taungpyan
Flodding 2 Mekyut	5	54.6	Local 2 Kyarpyan, Zero Treatment Pawsanyin
			Local 3 Taungpyan
Flodding 3 IR-84649.	1295.30		and a state of the second second
a a a a a a a a a a a a a a a a a a a	5	57.2	Zero Treatment Pawsanyin
			Local 3 Taungpyan
Salt 2 IR-11T255	5	59	Zero Treatment Pawsanyin
Our E INTERIO	•	00	Local 3 Taungpyan
Salt 1 Pyimyanmarse	in		Local 5 Tadrigpyan
Gait i Yiiiiyaiiiiaise	5	61.6	Local 3 Taungpyan
Salt 3 Sinthwelatt	5	01.0	Local 5 Taungpyan
Sait 5 Sinu Weidu	5	64	Flodding 1 Swarna Sub-1, Local 3 Taungpyan
Local 1 Daymun	5		
Local 1 Baygyar	5	67.2	Flodding 1 Swarna Sub-1
Local 2 Kyarpyan	5	71.4	Flodding 1 Swarna Sub-1, Flodding 2 Mekyut
Zero Treatment Paws	anyin	1000	
	5	75	Flodding 1 Swarna Sub-1, Flodding 2 Mekyut Flodding 3 IR-84649.1295.30
			Salt 2 IR-11T255
Local 3 Taungpyan	5	80	Flodding 1 Swarna Sub-1, Flodding 2 Mekyut Flodding 3 IR-84649.1295.30
			Salt 2 IR-11T255, Salt 1 Pyimyanmarsein Salt 3 Sinthwelatt

Notes: This report provides multiple comparison tests for all possible contrasts among the the means. These contrasts may involve more groups than just each pair, so the method is much stricter than need be. The <u>Tukey Kramer</u> method provides more accurate results when only pairwise comparisons are needed.

Zokekali:						
Friedman Test Se	ectio	n				
		Friedman		Prob	Con	cordance
Ties		(Q)	DF	Level	(W)	
Ignored		7.566667	7	0.3723	349 0.21	6190
Correction		7.713592	7	0.358	525 0.22	0388
Multiplicity		48				
			Ana	lysis of Varia	nce Report	
Page/Date/Time Database	2	18.01.2018 1				
Response	Sa	ample_Plot_Nr_	_Hills			
Means and Effec	ts Se	ection				
					Standard	
			Count 40	Mean 66.525	Error	Effect

Ierm	Count	wean	Error	Effect
All	40	66.525		66.525
A: Farmer_No				
1	8	64	0	-2.525
2	8	64.25	0	-2.275
3	8	65.125	0	-1.4
4	8	74.25	0	7.725
5	8	65	0	-1.525
B: Variety				
Flodding 1 Swarna Sub-1	5	67	4.183215	0.475
Local 1 Baygyar	5	69.2	4.183215	2.675
Local 2 Kyarpyan	5	71.8	4.183215	5.275
Local 3 Taungpyan	5	58.6	4.183215	-7.925
Salt 1 Pyimyanmarsein	5	62.8	4.183215	-3.725
Salt 2 IR-11T255	5	63.4	4.183215	-3.125
Salt 3 Sinthwelatt	5	69	4.183215	2.475
Zero Treatment Pawsanyin	5	70.4	4.183215	3.875

Plant Height

Boyargyi

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	41.989091	9	0.000003	0.933091
Correction	41.989091	9	0.000003	0.933091
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time Database	2 18.01.2018 16:37:19
Response	Whole_Plot_Plant_Height

Means and Effects Section

								Standar	ď			
Term				Count	N	lean		Error		Effect		
All				501 117.5557						117.596	66	
A: Farmer_No												
6				100	1	18.565		1.17400	7	0.9683818		
7				100		19.963		1.17400		2.3663		
8				100		14.415						
0								1.17400		-3.1816		
9				100		18.01		1.17400		0.4133		
10				101	1	16.8327		1.16818		-0.5665	5272	
B: Variety												
Flodding 1 Swa	arna Su	b-1		50	9	4.272		2.88318	5	-23.324	62	
Flodding 2 Mek				50	1.	49.53		2.88318	5	31.933	38	
Flodding 3 IR-8		205 30		51		97.8549		2.854778		-19.72644		
		230.00										
Local 1 Baygya				50		134.538		2.883185		16.94138		
Local 2 Kyarpy	an			50	1	115.936		2.883185		-1.660618		
Local 3 Taungp	yan			50		130.396		2.883185		12.79938		
Salt 1 Pyimyan		n		50		105.802		2.883185		-11.79462		
Salt 2 IR-11T25				50		96.266		2.883185		-21.33062		
Salt 3 Sinthwel				50		18.83		2.88318	7	1.2333		
Zero Treatment	t Pawsa	anyin		50	1	32.526		2.88318	5	14.929	38	
Plant Height	Zero Treatm	n Local 1 Bayg	Local 2 Kyarr I	local 3 Taun, Salt	1 Pyimya Si	alt 2 IR-11T Sal	t 3 Sinthw	Flodding 1 S\ Fl	odding 2 M I	lodding 3 IR-84	649.1295.3	
ero Treatment Pawsanyin	C		11	1	15	27	7	32	13	22		
ocal 1 Baygyar	5		16	4	20	32	12	37	8	27		
ocal 2 Kyarpyan	11	. 16	0	12	4	16	4	21	24	11		
ocal 3 Taungpyan	1	4	12	0	16	28	8	33	12	23		
Salt 1 Pyimyanmarsein	15	5 20	4	16	0	12	8	17	28	7		
alt 2 IR-11T225	27	32	16	28	12	0	20	5	40	5		
alt 3 Sinthwelatt	7	1 12	4	8	8	20	0	25	20	15		
lodding 1 Swarna Sub-1	32		21	33	17	5	25	0	45	10		
Flodding 2 Mekyut	13		24	12	28	40	20	45	0	35		
Flodding 3 IR-84649.1295.30	22	27	11	23	7	5	15	10	35	0		

24

Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	31.466667	7	0.000051	0.899048
Correction	31.466667	7	0.000051	0.899048
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 14:11:38
Database	
Response	Whole_Plot_Plant_Height

						Stand	lard			
Term			Count	Mean		Error		Effect		
All			400	109.5113				109.51	13	
A: Farmer No										
1 -			80	111.	16	0.960	8631	1.6487	,	
2			80		2726	0.960		-2.238		
3			80		5001	0.960		-1.011		
4			80	109.		0.960		0.1037		
5			80		0088	0.960		1.4974		
B: Variety						0.000	0001	1.4074		
Flodding 1 Swarna Sub-1			50	96.0	78	4.227	305	-13.4333		
Local 1 Baygyar			50	137.504		4.227		27.9927		
Local 2 Kyarpyan				132.01		4.227305		22.4987		
Local 3 Taungpyar				136.146		4.227305		26.6347		
Salt 1 Pyimyanma			50	69.3564		4.227		-40.1549		
the first of the second s	ISEIII									
Salt 2 IR-11T255			50	63.4		4.227		-46.05		
Salt 3 Sinthwelatt	1999 F.		50	105.		4.227		-3.669		
Zero Treatment Pa	awsanyin		50	135.	696	4.227	305	26.184	17	
Plant Height	Zero Treatm L	ocal 1 Bayg Loc	al 2 Kyarr Loca	3 Taun Salt	1 Pyimy: Sal	t 2 IR-11T Sal	t 3 Sinthw Fl	odding 1 Swa	rna Sub-1	
Zero Treatment Pawsanyin	0	8	2	4	20	23	10	13		
Local 1 Baygyar	8	0	6	4	28	31	18	21		
Local 2 Kyarpyan	2	6	0	2	22	25	12	15		
Local 3 Taungpyan	4	4	2	0	24	27	14	17		
Salt 1 Pyimyanmarsein	20	28	22	24	0	3	10	7		
Salt 2 IR-11T225	23	31	25	27	3	0	13	10		
Salt 3 Sinthwelatt	10	18	12	14	10	13	0	3		
Flodding 1 Swarna Sub-1	13	21	15	17	7	10	3	0		

Nr. Tillers

Boyargyi

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	19.189091	9	0.023632	0.426424
Correction	19.353301	9	0.022351	0.430073
Multiplicity	42			

Analysis of Variance Report

Page/Date/Time	2	18.01.2018 16:45:12
Database		
Response	W	hole_Plot_Nr_Tillers

Means and En	ecis Jecii	on					S	tandard			
Term				Count	Me	an	1.00	ror	2	Effect	
All				501	10.23553		11.57			10.23945	
A: Farmer No									10.200		
6				100			0	439231	1	-0.3394545	
					9.9		- 21		S		
7				100	9.7	-		439231		-0.4494	
8				100	10.			439231		0.6405	
9				100	9.8		0.	439231	4	-0.4394	1546
10				101	10.	80198	0.	437051	6	0.5878	182
B: Variety								1.1.2.6.4			
Flodding 1 Swa	rna Sub-1			50	8.8		1.	136151		-1.4394	155
Flodding 2 Mek				50	9.1			136151		-1.119455	
Flodding 3 IR-8		30		51		8.90196		1.124957		-1.324909	
the second se											
Local 1 Baygya				50	16.1		1.136151			5.860546	
Local 2 Kyarpya				50 9.48		8	1.136151			-0.7594545	
Local 3 Taungpy	yan			50		8.46		1.136151		-1.779455	
Salt 1 Pyimyann				50	8.6	4	1.	136151		-1.5994	155
Salt 2 IR-11T25				50	12.	44	1	136151		2.2005	
Salt 3 Sinthwela				50	9.3			136151		-0.9194	
				50	11.	- 10 C	1.55	136151		0.8805	
Zero Treatment				50		12	1.	130131		0.0005	404
Ir .Tillers	Zero Treatm Loca	al 1 Bayg Loc	al 2 Kyarr Loc	al 3 Taun _i Salt 1	. Pyimya Salt	2 IR-11T Salt	3 Sinthw Floo	ding 1 S\ Floo	lding 2 IV F	lodding 3 IR-8	4649.1295
ero Treatment Pawsanyin	0	1	18	23	23	2	17	19	20	18	
ocal 1 Baygyar	1	0	18	22	23	3	16	18	20	18	
ocal 2 Kyarpyan	18	18	0	5	5	20	2	1	2	0	
ocal 3 Taungpyan	23	22	5	0	1	25	6	4	3	5	
alt 1 Pyimyanmarsein	23	23	5	1	0	25	7	5	3	5	
alt 2 IR-11T225	2 17	3	20	25 6	25 7	0	19 0	21	22	20	
alt 3 Sinthwelatt	17	16 18	1	4	5	19 21	2	2	4	2	
lodding 1 Swarna Sub-1	20	20	2	3	3	21	4	2	0	2	
Flodding 2 Mekyut											

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	21.133333	7	0.003578	0.603810
Correction	21.234450	7	0.003438	0.606699
Multiplicity	12			

Analysis of Variance Report

Page/Date/Time	2	18.0	01.20	18	14:18:51
Database					
Response	W	nole	Plot	Nr	Tillers

						Standa	rd		
Term			Count	Mean		Error		Effect	
All			400	11.43	5			11.435	
A: Farmer_No									
1 -			80	11.71	25	0.47912	268	0.2775	
2			80	11.36		0.47912		-0.0725	
3			80	12.98	75	0.47912	268	1.5525	
4			80	9.462		0.47912		-1.9725	
5			80	11.65		0.47912		0.215	
B: Variety			00	11.00		0.11011		0.210	
Flodding 1 Swarna	Sub-1		50	18.08		1.03943	37	6.645	
	Jub-1		50	12.68		1.039437		1.245	
Local 1 Baygyar						1.039437			
Local 2 Kyarpyan			50	10.88				-0.555	
Local 3 Taungpyan			50	9.44		1.039437		-1.995	
Salt 1 Pyimyanmai	rsein		50	10.58		1.039437		-0.855	
Salt 2 IR-11T255			50	7.36		1.039437		-4.075	
Salt 3 Sinthwelatt			50	9.84		1.039437		-1.595	
Zero Treatment Pa			50	12.62		1.03943	37	1.185	
Nr. Tillers	the second se	cal 1 Bayg L	ocal 2 Kyarr Loca	al 3 Taun, Salt	1 Pvimva Sa	lt 2 IR-11T Salt	3 Sinthw F	lodding 1 Swarn	a Sub-1
Zero Treatment Pawsanyin	0	3	5	14	8	21	13	8	
Local 1 Baygyar	3	0	8	17	11	24	16	5	
Local 2 Kyarpyan	5	8	0	10	3	16	8	13	
Local 3 Taungpyan	14	17	10	0	7	7	2	22	
Salt 1 Pyimyanmarsein	8	11	3	7	0	13	5	16	
Salt 2 IR-11T225	21	24	16	7	13	0	8	29	
Salt 3 Sinthwelatt	13	16	8	2	5	8	0	21	
Flodding 1 Swarna Sub-1	8	5	13	22	16	29	21	0	

Nr. Panicles (WP)

Boyargyi

Friedman	Test	Section	
			Ericdman

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	21.458182	9	0.010764	0.476848
Correction	21.668299	9	0.009992	0.481518
Multiplicity	48			

Analysis of Variance Report

Page/Date/Time	2	18.01.2018 16:46:31
Database		
Response	W	hole Plot Nr Panicles

Means and Em	ects Sec	tion						tandard			
Term				Count	Me	an		ror		Effect	
All				501		74451				9.778363	
				501	9.1	74431				9.110303	
A: Farmer_No											
6				100	9.5	9	0.	4263478	3	-0.188363	6
7				100	9.4	9	0.	4263478	3	-0.288363	6
8				100	10.	24	0.	4263478	3	0.4616364	
9				100	9.2	3	0.	4263478	3	-0.548363	6
10				101		31683		4242319		0.5634546	
B: Variety				101	10.	01000	υ.	1212010		0.0004040	
	rno Cub	4		50	0 0		4	116541		1 470264	
Flodding 1 Swa				50		8.3				-1.478364	
Flodding 2 Mek		2.42		50		8.44		1.116541		-1.338364	
	odding 3 IR-84649.1295.30			51		8.490196		1.105541		-1.274727	
Local 1 Baygya	al 1 Baygyar			50		15.8		116541		6.021636	
Local 2 Kyarpy				50	9	9		116541		-0.778363	6
	ocal 3 Taungpyan			50	8.1	8.14		1.116541		-1.638364	
	Salt 1 Pyimyanmarsein			50		8.24		1.116541		-1.538364	
Salt 2 IR-11T25				50		11.74		116541		1.961636	
Salt 3 Sinthwell				50 9.1				116541		-0.678363	6
Zero Treatment		din.				10.52 1.116541		0.7416363			
AB: Farmer No		ym		50	10.	52	1.	110341		0.7410303	
Nr. Pannicles		cal 1 Bayg L	ocal 2 Kyarr Loc	al 3 Taun Salt	1 Pyimya Salt	2 IR-11T Salt	3 Sinthw Flo	dding 1 Sv Flod	ding 2 N Fle	odding 3 IR-84649	.1295.30
Zero Treatment Pawsanyin	0	2	18	21	23	3	13	22	22	18	
Local 1 Baygyar	2	0	19	23	24	2	14	23	24	19	
Local 2 Kyarpyan	18	19	0	4	5	21	5	4	5	0	
Local 3 Taungpyan	21	23	4	0	2	24	9	1	1	4	
Salt 1 Pyimyanmarsein	23	24	5	2	0	26	10	1 25	1 25	5	
Salt 2 IR-11T225 Salt 3 Sinthwelatt	3 13	2 14	21	24 9	26 10	0 16	16 0	25 9	10	21 5	
Flodding 1 Swarna Sub-1	22	23	4	1	10	25	9	9	10	4	
Flodding 2 Mekyut	22	23	5	1	1	25	10	1	0	5	
Flodding 3 IR-84649.1295.30		19	0	4	5	21	5	4	5	0	

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	19.916667	7	0.005753	0.569048
Correction	20.011962	7	0.005544	0.571770
Multiplicity	12			

Analysis of Variance Report

Page/Date/Time	2	18.01.2018 14:21:39
Database		
Response	W	hole_Plot_Nr_Panicles

						Sta	ndard		
Term			Cour	nt M	ean	Err		Effect	
All			400	10	0.285			10.285	
A: Farmer No									
1			80	10	0.175	0.4	904929	-0.11	
2			80		0.1875		904929	-0.0975	
3			80		.725		904929	1.44	
4			80		1625		904929	-1.1225	
5			80		0.175		904929	-0.11	
B: Variety			00			0.4	001020	0.11	
Flodding 1 Swarna	Sub-1		50	15	88	0.8	148685	3.395	
	a Sub-1		50		13.68		148685	1.895	
Local 1 Baygyar					12.18				
Local 2 Kyarpyan			50		10.08		148685	-0.205	
	Local 3 Taungpyan		50		8.8		148685	-1.485	
Salt 1 Pyimyanma	rsein		50	50 9.66		0.8	148685	-0.625	
Salt 2 IR-11T255			50	50 6.6		6.64 0.8148		-3.645	
Salt 3 Sinthwelatt			50	9.	9.24		148685	-1.045	
Zero Treatment Pa	awsanyin		50	12	2	0.8	148685	1.715	
Nr. Pannicles	Zero Treatm	Local 1 Bayg	Local 2 Kyarr	Local 3 Taun	Salt 1 Pyimya	Salt 2 IR-11T	Salt 3 Sinthw	Flodding 1 Swarna Sub-1	
Zero Treatment Pawsanyin	0	3	5	14	9	21	12	7	
Local 1 Baygyar	3	0	8	17	12	24	15	4	
Local 2 Kyarpyan	5	8	0	9	4		7	12	
Local 3 Taungpyan	14	17	9	0	5		2	21	
Salt 1 Pyimyanmarsein	9	12	4	5	0		3	16	
Salt 2 IR-11T225	21	24	16	7	12		9	28	
Salt 3 Sinthwelatt	12	15	7	2	3	9	0	19	
Flodding 1 Swarna Sub-1	7	4	12	21	16	28	19	0	

Nr Panicles (SP)

Boyargyi

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	20.225455	9	0.016571	0.449455
Correction	20.348780	9	0.015878	0.452195
Multiplicity	30			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 17:10:28
Database	
Response	Sample_Plot_Nr_Pannicles

Means and Ene							S	tandard			
Term				Count	Me	an		rror		Effect	
All				501		78044				9.98236	4
A: Farmer No				001	0.0	10044				0.00200	-
				100	9.6	•	0	100000		0 2502	000
6				100		-		.409026		-0.3523	
7				100	9.6			.409026		-0.3123	
8			-	100	10.	66	0	.409026	1	0.67763	64
9				100	9.3	6	0	409026	1	-0.6223	636
10			1.1	101	10	56436	0	406996	2	0.60945	
B: Variety							Ŭ		C	0.00010	
the second se	ma Cub 4			50	0 0			076100		1 6000	64
Flodding 1 Swar				50	8.3 8.7			.076183		-1.682364	
Flodding 2 Mek				50				.076183		-1.282364	
Flodding 3 IR-84	4649.1295	5.30		51 8.		64706	1.06558			-1.198727	
Local 1 Baygyar	r			50 15.08		08	1	1.076183		5.097636	
Local 2 Kyarpya			3	50 9.3			1	1.076183		-0.6823636	
Local 3 Taungpy				50 8.26			1.076183			-1.722364	
				50 9			1.076183		-0.9823		
Salt 1 Pyimyann											
Salt 2 IR-11T25				50 12.2			1.076183			2.217636	
Salt 3 Sinthwela	att			50 9.38		1	.076183		-0.6023	636	
Zero Treatment		n	3	50	10.	82	1	.076183		0.83763	64
Sample Plot Nr. Panicles	Zero Treatm Loca							-	-	-	649.129
Zero Treatment Pawsanyin	0	3	17	23	10	2	11	25	19	15	
Local 1 Baygyar	3	0	20 0	26 6	13	1	13 7	28 8	22	18	
Local 2 Kyarpyan Local 3 Taungpyan	17 23	20 26	6	0	13	19 25	13	2	2	2	
Salt 1 Pyimyanmarsein	10	13	7	13	0	12	13	15	9	5	
Salt 2 IR-11T225	2	1	19	25	12	0	13	27	21	17	
Salt 3 Sinthwelatt	11	13	7	13	1	13	0	15	9	5	
Flodding 1 Swarna Sub-1	25	28	8	2	15	27	15	0	6	10	
Flodding 2 Mekyut	19	22	2	4	9	21	9	6	0	4	
Flodding 3 IR-84649.1295.30	15	18	2	8	5	17	5	10	4	0	

Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	19.750000	7	0.006136	0.564286
Correction	19.797136	7	0.006025	0.565632
Multiplicity	6			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 14:38:18
Database	
Response	Sample_Plot_Nr_Pannicles

						Stand	dard					
Term			Count	Mea	an	Error		Effect				
All			400	10.2	235			10.235				
A: Farmer No												
1	80	9.51	25	0.428	3366	-0.7225						
2			80		375	0.428	3366	0.5025				
3			80		625	0.428		1.4275				
			80			0.428		-1.31				
4 5			80		8.925 10.3375		3366					
			00	10.3	575	0.420	5500	0.1025				
B: Variety	0.1.4		50	10.	- 0	0 707	0407	0.045				
Flodding 1 Swarn	a Sub-1		50	12.5		0.797		2.345				
Local 1 Baygyar Local 2 Kyarpyan Local 3 Taungpyan			50	12.72 9.88		0.797	0167	2.485				
			50			0.7970167	-0.355					
			50	8.9		0.797	0167	-1.335				
Salt 1 Pyimyanma					50 9.78	0.7970167		-0.455				
Salt 2 IR-11T255								6.66		0.7970167		-3.575
Salt 3 Sinthwelatt								9.22		0.7970167		-1.015
Zero Treatment P			50 50	12.1		0.797		1.905				
SP Nr. Panicles		al 1 Bavg Lo			-		11 P. 19 11	odding 1 Swarna S	ub-1			
ero Treatment Pawsanyin	0	5	5	13	9	21	14	4				
ocal 1 Baygyar	5	0	10	18	14	26	19	1				
ocal 2 Kyarpyan	5	10	0	8	4	16	9	9				
ocal 3 Taungpyan	13	18	8	0	5	8	1	17				
Salt 1 Pyimyanmarsein	9	14	4	5	0	13	5	13				
alt 2 IR-11T225	21	26	16	8	13	0	8	25				
Salt 3 Sinthwelatt	14	19	9	1	5	8	0	18	_			
Flodding 1 Swarna Sub-1	4	1	9	17	13	25	18	0				

Panicle per Tiller

Boyargyi

Salt 3 Sinthwelatt

Flodding 2 Mekyut

Flodding 1 Swarna Sub-1

Flodding 3 IR-84649.1295.30

Fails disc as	T	C. Alar	
Friedman	lest	Section	

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	23.443636	9	0.005273	0.520970
Correction	23.443636	9	0.005273	0.520970
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 17:09:36
Database	
Response	Whole_Plot_Pannicles_Per_Tiller

Means and Effects Section

							St	andard			
Term			1.1	Count	Mea	an	Er	ror		Effect	
All			0	501	0.9	536144				0.9536029	9
A: Farmer No											
6			-	100	0.90	699428	7.5	566584E	-03	1.633991	E-02
7				100		682852		566584E		1.468229	
				100	->====	364108		566584E		-1.719207	
8 9				100	10.000	375448		566584E		-1.605805	
					0.00						
10				101	0.9	558658	7.5	529032E	-03	2.227909	E-03
B: Variety											
Flodding 1 Swa	arna Sub-1		13	50	0.94	473149	8.5	563128E	-03	-6.287985	5E-03
Flodding 2 Mel	kyut			50	0.92	20516	8.5	563128E	-03	-3.308696	6E-02
Flodding 3 IR-8		5.30	1.1	51	0.90	604837	8.4	78761E	-03	6.903142	E-03
Local 1 Baygya				50	0.9	775661	8.5	8.563128E-03		03 2.396315E-0	
Local 2 Kyarpy				50		415284	8.5	563128E	-03	-1.207446	
Local 3 Taung				50		665864		63128E		1.298347	
Salt 1 Pyimyan				50		557215		563128E		2.118608	
Salt 2 IR-11T2				50	0.94			563128E		-9.802853	
Salt 3 Sinthwe		3		50	1000	749596		563128E		0.021356	
Zero Treatmen		in		50	0.94	475301	8.5	563128E	-03	-6.072812	2E-03
Panicle per Tiller	Zero Treatmi Loc	al 1 Bayg Loc	al 2 Kyarr Loc	al 3 Taun; Salt :	1 Pyimya Salt	2 IR-11T Salt	3 Sinthw Floo	dding 1 Sv Flod	Iding 2 N	Flodding 3 IR-846	49.1295.30
Zero Treatment Pawsanyin	0	22	8	9	2	3	20	5	9		
Local 1 Baygyar	22	0	30	13	20	25	2	27	31		
ocal 2 Kyarpyan	8	30	0	17	10	5	28	3	1		
Local 3 Taungpyan	9	13	17	0	7	12	11	14	18	2	
Salt 1 Pyimyanmarsein	2	20	10	7	0	5	18	7	11	5	
Salt 2 IR-11T225	3	25	5	12	5	0	23	2	6	10	

Odan dand

Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	22.333333	7	0.002225	0.638095
Correction	22.333333	7	0.002225	0.638095
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 14:34:56
Database	
Response	Whole_Plot_Pannicles_Per_Tiller

Means and Effects Section

						Standa	rd		
Term			Count	-		Error		Effect	
All			400	0.9	070814			0.907081	14
A: Farmer No									
1			80	0.8	842391	0.0106	68	-2.28422	8E-02
2			80	0.9	065564	0.0106	68	-5.24920	3E-04
3			80	0.9	078488	0.0106	68	7.674787	7E-04
4			80	0.9	606298	0.0106		5.354846	
5			80		761326	0.0106		-3.09487	
B: Variety									
Flodding 1 Swarna	Sub-1		50	0.7	59058	1,7046	97E-02	-0.14802	34
Local 1 Baygyar			50		621345		97E-02	5.505316	
Local 2 Kyarpyan			50		25913		97E-02	1.883169	
Local 3 Taungpyar			50		266433		97E-02	1.956191	
Salt 1 Pyimyanma			50		053235		97E-02	-1.75787	
	ISem								
Salt 2 IR-11T255			50		87845		97E-02	-1.92364	
Salt 3 Sinthwelatt	100000		50		365886		97E-02	0.029507	
Zero Treatment Pa	awsanyin		50	0.9	531451	1.7046	97E-02	4.606371	1E-02
Pannicle per Tiller	Zero Treatm	Local 1 Bayg	Local 2 Kyarr	Local 3 Taun	Salt 1 Pyimya	Salt 2 IR-11T Sal	t 3 Sinthw	Flodding 1 Swa	rna Sub-1
Zero Treatment Pawsanyin	0	4	9	7	13	16	1	26	
Local 1 Baygyar	4	0	13	11	17	20	5	30	
Local 2 Kyarpyan	9	13	0	2	4	7	8	17	
Local 3 Taungpyan	7	11	2	0	6	9	6	19	
Salt 1 Pyimyanmarsein	13	17	4	6	0	3	12	13	
Salt 2 IR-11T225	16	20	7	9	3	0	15	10	
Salt 3 Sinthwelatt	1	5	8	6	12	15	0	25	
Flodding 1 Swarna Sub-1	26	30	17	19	13	10	25	0	

en la de

36

Panicle Length

Boyargyi

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	29.901818	9	0.000456	0.664485
Correction	29.901818	9	0.000456	0.664485
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time Database	2 18.01.2018 16:56:48
Response	Whole_Plot_Pannicle_Length

	ecis Jeci							standard						
Term				Count	Me	an		rror		Effect				
All				501	24	02435				24.0298	9			
A: Farmer_No				001		02400				24.0200				
				100	~	000		0054070		0.00040				
6				100	_	669		.2354872		0.63910				
7				100	23.	6	C	.2354872	2	-0.42989	909			
8				100	24.	444	C	.2354872	2	0.41410	91			
9				100	23.	691	C	.2354872	2	-0.33889	909			
10				101	23.	72079	C	.2343185	5	-0.28443	864			
B: Variety									1	0.2011001				
Flodding 1 Swa	rna Sub-1			50	21	724	C	.542784		-2.30589	1			
				50		27.228		0.542784		3.198109				
	Flodding 2 Mekyut													
Flodding 3 IR-84649.1295.30 Local 1 Baygyar Local 2 Kyarpyan				51		22.99608		.5374363	-	-0.99898				
				50	23.358 23.082			0.542784		-0.6718909				
				50				.542784		-0.9478909	909			
	Local 3 Taungpyan Salt 1 Pyimyanmarsein						50		682		0.542784		-2.347891	
				50				.542784		-0.1978909				
Salt 2 IR-11T25				50	1. The second	23.832 23.53		.542784			1. T. T. T. T. T.			
	-									-0.4998909				
Salt 3 Sinthwela				50		292		.542784		5.26210				
Zero Treatment	Pawsany	in		50	23.	54	C	.542784		-0.48989	909			
Panicle Length	Zero Treatmi Loo	al 1 Bayer Loc	al 2 Kvarr Lo	cal 3 Taun Salt	1 Pvimv: Salt	2 IR-11T Salt	3 Sinthw Fl	odding 1 Sv Flod	ding 2 N	Flodding 3 IR-846	549.1295.30			
Zero Treatment Pawsanyin	0	1	1	16	5	0	22	15	20	1				
Local 1 Baygyar	1	0	2	17	4	1	21	16	19	2				
Local 2 Kyarpyan	1	2	0	15	6	1	23	14	21	0				
Local 3 Taungpyan	16	17	15	0	21	16	38	1	36	15				
Salt 1 Pyimyanmarsein	5	4	6	21	0	5	17	20	15	6				
Salt 2 IR-11T225	0	1	1	16	5	0	22	15	20	1				
Salt 3 Sinthwelatt	22	21	23	38	17	22	0	37	2	23				
Flodding 1 Swarna Sub-1	15	16	14	1	20	15	37	0	35	14				
Flodding 2 Mekyut	20	19	21	36	15	20	2	35	0	21				
Flodding 3 IR-84649.1295.30	1	2	0	15	6	1	23	14	21	0				

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	28.466667	7	0.000181	0.813333
Correction	28.466667	7	0.000181	0.813333
Multiplicity	0			

Analysis of Variance Report

Page/Date/Time	2	18.01.2018 14:30:58
Database		
Response	W	nole_Plot_Pannicle_Length

						Standa	rd	
Term			Count	Mear	1	Error		Effect
All			400	22.62	26			22.626
A: Farmer No								
1 -			80	22.53	35	0.2874	755	-0.091
2			80	22.82		0.2874		0.194
3 4			80	22.78		0.2874		0.15775
			80	22.29		0.2874		-0.331
5			80	22.69		0.2874		0.07025
B: Variety			00	22.00	020	0.2014	100	0.07025
	Cub 1		50	22 67	22	0.6488	170	0.006
Flodding 1 Swarna	a Sub-1		50	23.62				0.996
Local 1 Baygyar			50	22.95		0.6488		0.332
Local 2 Kyarpyan			50 50		23.532 23.264		179	0.906 0.638
Local 3 Taungpyar	n						179	
Salt 1 Pyimyanma			50	18.09	18.09		179	-4.536
Salt 2 IR-11T255 Salt 3 Sinthwelatt			50	17.642		0.6488179		-4.984 5.564
			50		28.19		179	
Zero Treatment Pa	awsanyin		50	23.71		0.6488		1.084
Pannicle Length	Zero Treatm	Local 1 Bayg	Local 2 Kyarr Loca	I 3 Taun, Salt	1 Pyimy: Sa	lt 2 IR-11T Salt	3 Sinthw F	lodding 1 Swarna Sub
ero Treatment Pawsanyin	0	5	4	1	17	20	14	5
ocal 1 Baygyar	5	0	1	4	12	15	19	10
ocal 2 Kyarpyan	4	1	0	3	13	16	18	9
ocal 3 Taungpyan	1	4	3	0	16	19	15	6
alt 1 Pyimyanmarsein	17	12	13	16	0	3	31	22
alt 2 IR-11T225	20	15	16	19	3	0	34	25
Salt 3 Sinthwelatt	14	19	18	15	31	34	0	9
Flodding 1 Swarna Sub-1	5	10	9	6	22	25	9	0

Nr. Spikelets (WP)

Boyargyi

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	28.810909	9	0.000697	0.640242
Correction	28.810909	9	0.000697	0.640242
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time Database	2 18.01.2018 16:55:17
Response	Whole_Plot_Nr_Spikelets

Wearis and Ei	rects Sec	lion						Standard	÷	
Term				Count	м	ean		Error		Effect
All				501		34.7325				134.8155
				001		7.1020				104.0100
A: Farmer_No				100						
6				100		1.31		3.026305		6.494545
7 8 9 10				100	13	30.71		3.026305		-4.105454
				100	14	10.25		3.026305		5.434546
				100		24.19		3.026305		-10.62545
				101		37.1782		3.011286		2.801818
B: Variety								0.011200		2.001010
Flodding 1 Sw	arna Sub-	1		50	83	3.18		10.38757		-51.63546
Flodding 2 Me				50		59.12		10.38757		24.30455
Flodding 3 IR-		5 20		51		9.2549		10.28523		-25.24091
		5.30			134.22 117.24			10.38757		
Local 1 Baygy				50						-0.5954546
Local 2 Kyarpy	an			50				10.38757		-17.57545
Local 3 Taungpyan				50	11	5.24		10.38757		-19.57545
Salt 1 Pyimyanmarsein Salt 2 IR-11T255				50	16	68.3		10.38757		33.48455
				50		15.48		10.38757		10.66455
Salt 3 Sinthwe				50		52.48		10.38757		27.66455
		1.1								
Zero Treatmen	t Pawsany	/in		50	1:	53.32		10.38757	à	18.50455
Ir. Spikelets		al 1 Bayg Loc	al 2 Kyarr Lo	cal 3 Taun Salt 1	and the second se				ding 2 N F	lodding 3 IR-84649.1295
ero Treatment Pawsanyin	0	12	17	20	7	6	2	30	1	20
ocal 1 Baygyar	12	0	5	8	19	6	14	18	13	8
ocal 2 Kyarpyan	17 20	5	0	3	24 27	11	19 22	13	18 21	3
ocal 3 Taungpyan alt 1 Pyimyanmarsein	20	19	24	27	0	14	5	37	6	27
alt 2 IR-11T225	6	6	11	14	13	13	8	24	7	14
alt 3 Sinthwelatt	2	14	19	22	5	8	0	32	1	22
lodding 1 Swarna Sub-1	30	14	13	10	37	24	32	0	31	10
lodding 2 Mekyut	1	13	18	21	6	7	1	31	0	21
Flodding 3 IR-84649.1295.30		8	3	0	27	14	22	10	21	0

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	26.333333	7	0.000439	0.752381
Correction	26.333333	7	0.000439	0.752381
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 14:26:15
Database	
Response	Whole_Plot_Nr_Spikelets

5

2

9

Means and Effects Section

Flodding 1 Swarna Sub-1

Term All A: Farmer_No 1			Cou 400	1 1	lean 00.95 01.675	Er 2.8	andard ror 882007	Effect 100.95 0.725	
2			80		00.4		382007	-0.55	
3			80		02.2875		382007	1.3375	
4			80		00.2375		382007	-0.7125	
5			80	1	00.15	2.8	382007	-0.8	
B: Variety									
Flodding 1 Swarn	a Sub-1		50	1	05.1	5.9	3395	4.15	
Local 1 Baygyar			50	1	06.82	5.9	3395	5.87	
Local 2 Kyarpyan			50		122.04		3395	21.09	
Local 3 Taungpya			50	104.18			3395	3.23	
	Salt 1 Pyimyanmarsein			50 54.88			3395	-46.07	
Salt 2 IR-11T255			50		2.92		3395	-38.03	
Salt 3 Sinthwelatt Zero Treatment P AB: Farmer No V	awsanyin		50 50		38.92 12.74		93395 93395	37.97 11.79	
Nr. Spikelets	Zero Treatm	Local 1 Bayg	Local 2 Kyarp	Local 3 Taun	Salt 1 Pyimya	Salt 2 IR-11T	Salt 3 Sinthw	Flodding 1 Swarna S	Sub-1
Zero Treatment Pawsanyin	0	7	4	8	22	21	7	5	
Local 1 Baygyar	7	0	11	1	15	14	14	2	
Local 2 Kyarpyan	4	11	0	12	26	25	3	9	
Local 3 Taungpyan	8	1	12	0	14	13	15	3	
Salt 1 Pyimyanmarsein	22	15	26	14	0	1	29	17	
Salt 2 IR-11T225	21	14	25		1	0	28	16	
Salt 3 Sinthwelatt	7	14	3	15	29	28	0	12	

17

3

16

12

0

Nr. Spikelets (SP)

Boyargyi

Salt 3 Sinthwelatt

Flodding 2 Mekyut

Flodding 1 Swarna Sub-1

Flodding 3 IR-84649.1295.30

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	28.418182	9	0.000812	0.631515
Correction	28.418182	9	0.000812	0.631515
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 17:15:01
Database	
Response	Sample_Plot_Nr_Spikelets

Means and Effects Section

								Standa	rd		
Term				Count		Mean		Error		Effect	
All				501		134.700	6			134.79	44
A: Farmer No											
6				100		141.31		3.06687	7	6.5156	636
7				100		132.27		3.06687		-2.524	
8 9				100		140.52		3.06687		5.7256	
				100		122.81	2	3.06687		-11.98436	
10			101		136.5743		3.051656		2.267455		
B: Variety											
Flodding 1 Sw	arna Sub	b-1		50		85.2		10.3800)5	-49.59	436
Flodding 2 Me				50		162.14		10.3800)5	27.345	64
Flodding 3 IR-		295.30	51 50		106.9608		8	10.27778 10.38005		-27.45073 -0.9743636	
Local 1 Baygy						133.82					
Local 2 Kyarpy				50		115.2		10.38005)5	-19.59436	436
Local 3 Taungpyan				50	117.14			10.38005		-17.65436	436
Salt 1 Pyimyar		6		50		162.2		10.3800		27.405	
Salt 2 IR-11T2				50		146.8		10.3800		12.005	
Salt 3 Sinthwe				50		165.16		10.3800		30.365	
Zero Treatmen		nvin		50		152.94		10.3800		18.145	
Sample Plot Nr. Spikelets		- F AL -	Local 2 Kyarr	Local 3 Taun Sa	alt 1 Dvimu	1 N 2 N 2	Salt 3 Sinthu				
Zero Treatment Pawsanyin	2ero rreadin 0	12	LOCALZ Kyar	19	art i Fynny 4		3	30	3 3	21	0-0-0-0.1200
ocal 1 Baygyar	12	0	5	7	16	-	15	18	15	9	
ocal 2 Kyarpyan	17	5	0	2	21	. 11	20	13	20	4	
Local 3 Taungpyan	19	7	2	0	23		22		22	2	
Salt 1 Pyimyanmarsein	4	16	21	23	C		1		1	25	
Salt 2 IR-11T225	6	6	11	13	10	0 0	9	24	9	15	

Chandard

Friedman Test S	ection			
	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	26.733333	7	0.000372	0.763810
Correction	26.733333	7	0.000372	0.763810
Multiplicity	0			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 14:40:50
Database	
Response	Sample_Plot_Nr_Spikelets

Term All			Count 399	Mea 100	n 9925	Stand Error		Effect				
A: Farmer No			000	100	0020			101.01				
1			79	103	8101	2.962	467	2.9036	511			
2			80		125	2.943		-1.610				
3			80		8375	2.943		0.8147				
4			80		875	2.943		-1.235				
5			80	100		2.943		-0.872				
			00	100	.15	2.943	093	-0.072	1110			
B: Variety				100	~~		10	4 007				
Flodding 1 Swarn	a Sub-1		50	102		6.146		1.2372				
Local 1 Baygyar			50	111.26		6.14649		10.23722				
Local 2 Kyarpyan			50	120.18		6.14649		19.15722				
Local 3 Taungpya			49 50	106.9184 58.04		6.208893	6.019444 -42.98278					
Salt 1 Pyimyanma						6.14649						
Salt 2 IR-11T255							50			6.14649		-39.26278
Salt 3 Sinthwelatt			50	137.48		6.14649 6.14649	36.45722 9.137222					
				110.16								
Zero Treatment P	awsanyin		50	110.	10	0.140	49	9.1372	22			
P Nr. Spikelets	Zero Treatm Loc	al 1 Bayg Lo	cal 2 Kyarr Local	3 Taun Salt	1 Pyimya Salt	2 IR-11T Salt	3 Sinthw Flo	dding 1 Swar	na Sub-1			
ero Treatment Pawsanyin	0	1	8	5	20	19	8	7				
ocal 1 Baygyar	1	0	9	4	19	18	9	6				
ocal 2 Kyarpyan	8	9	0	13	28	27	0	15				
ocal 3 Taungpyan	5	4	.13	0	15	14	13	2				
alt 1 Pyimyanmarsein	20	19	28	15	0	1	28	13				
alt 2 IR-11T225	19	18	27	14	1	0	27	12				
Salt 3 Sinthwelatt	8	9	0	13	28	27	0	15				
Flodding 1 Swarna Sub-1	7	6	15	2	13	12	15	0				

Yield Basket/acre (WP)

D	
Bova	rava
buva	IUVI

an Dimmedia		Carrier Colors	Analysis of Va	riance Repo	rt				
Page/Date/Time Database	1 18.01	.2018 12:04:15							
Response	Whole P	Whole Plot Yield Volume Basket acre							
Analysis of Varia	nce Table								
Source		Sum of	Mean		Prob	Power			
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)			
A: Farmer No	4	6886.861	1721.715						
B: Variety	9	9845.76	1093.973	10.52	0.000000*	1.000000			
AB	36	3744.265	104.0073						
S	0	0							
Total (Adjusted)	49	20476.89							
Total	50								
* Term significant	at alpha = 0	.05							

Scheffe's Multiple-Comparison Test

Response: Whole Plot Yield Volume Basket acre Term B: Variety

Alpha=0.050 Error Term=AB DF=36 MSE=104.0073 Critical Value=4.4015

			Different From
Group	Count	Mean	Groups
Salt 2 IR-11T255	5	11.886	Local 3 Taungpyan, Local 2 Kyarpyan Salt 3 Sinthwelatt
Flodding 1 Swarna St	ub-1		
	5	18.038	Local 2 Kyarpyan, Salt 3 Sinthwelatt
Salt 1 Pyimyanmarse	in		
	5	19.428	Local 2 Kyarpyan, Salt 3 Sinthwelatt
Flodding 3 IR-84649.	1295.30		
	5	21.856	Local 2 Kyarpyan, Salt 3 Sinthwelatt
Flodding 2 Mekyut	5	25.302	Salt 3 Sinthwelatt
Local 1 Baygyar	5	33.714	
Zero Treatment Paws	anyin		
	5	39.436	
Local 3 Taungpyan	5	41.282	Salt 2 IR-11T255
Local 2 Kyarpyan	5	52.19	Salt 2 IR-11T255, Flodding 1 Swarna Sub-1
			Salt 1 Pyimyanmarsein
			Flodding 3 IR-84649.1295.30
Salt 3 Sinthwelatt			
	5	54.634	Salt 2 IR-11T255, Flodding 1 Swarna Sub-1
			Salt 1 Pyimyanmarsein
			Flodding 3 IR-84649.1295.30
			Flodding 2 Mekyut
			A DESCRIPTION OF A DESC

Notes:

This report provides multiple comparison tests for all possible contrasts among the the means. These contrasts may involve more groups than just each pair, so the method is much stricter than need be. The Tukey-Kramer method provides more accurate results when only pairwise comparisons are needed.

Zokekali **Friedman Test Section** Concordance Friedman Prob DF Ties (Q) Level (W) Ignored Correction 28.866667 0.824762 7 0.000153 0.824762 28.866667 7 0.000153 0 Multiplicity

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 13:26:50
Database	
Response	Whole Plot Yield Volume Basket acre

						Standa	ard		
Term			Count	Mea		Error		Effect	
All			40	44.5	8675			44.58675	
A: Farmer_No									
1			8	50.6	6875	0		6.082	
2			8	46.4	55	0		1.86825	
3			8	43.1	1	0		-1.47675	
4			8	41.4		0		-3.17175	
5			8	41.2	C	ŏ		-3.30175	
B: Variety			•			, in the second s		0.00110	
Flodding 1 Swarna	Sub-1		5	16.4	9	6.1899	17	-28.09675	5
Local 1 Baygyar			5	51.6		6.1899		7.10125	
Local 2 Kyarpyan			5	68.7		6.1899		24.15525	
Local 3 Taungpyan			5	56.9		6.1899		12.32725	
Salt 1 Pyimyanma			5	20.7		6.1899		-23.82875	
Salt 2 IR-11T255	sem		5	16.2					
						6.1899		-28.33475	
Salt 3 Sinthwelatt	1. A.		5	62.4		6.1899		17.82525	
Zero Treatment Pa	awsanyin		5	63.4	38	6.1899	17	18.85125	
Yield WP Basket/acre	Zero Treatm	Local 1 Bayg	Local 2 Kyarr Loca	al 3 Taun, Salt	1 Pyimya Sa	It 2 IR-11T Salt	3 Sinthw F	lodding 1 Swarna	Sub-1
Zero Treatment Pawsanyin	0	7	4	9	21	24	3	24	
Local 1 Baygyar	7	0	11	2	14	17	4	17	
Local 2 Kyarpyan	4	11	0	13	25	28	7	28	
Local 3 Taungpyan	9	2	13	0	12	15	6	15	
Salt 1 Pyimyanmarsein	21	14	25	12	0	3	18	3	
Salt 2 IR-11T225	24	17	28	15	3	0	21	0	
Salt 3 Sinthwelatt	3	4	7	6	18	21	0	21	
Flodding 1 Swarna Sub-1	24	17	28	15	3	0	21	0	

Yield Basket/acre (SP)

Boyargyi

Page/Date/Time	1 18.01	.2018 12:03:01				
Database						
Response	Sample	Plot Yield Volu	me Basket acre	6		
Analysis of Varia	nce Table					
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Farmer No	4	3913.155	978.2888			
B: Variety	9	11914.45	1323.828	5.19	0.000157*	0.997296
AB	36	9180.798	255.0222			
S	0	0				
Total (Adjusted)	49	25008.4				

Term significant at alpha = 0.05

Scheffe's Multiple-Comparison Test

Response: Sample Plot Yield Volume Basket acre Term B: Variety

Alpha=0.050 Error Term=AB DF=36 MSE=255.0222 Critical Value=4.4015

			Different From
Group	Count	Mean	Groups
Salt 2 IR-11T255	5	12.458	Salt 3 Sinthwelatt
Flodding 3 IR-84649.	1295.30		
	5	21.676	
Flodding 1 Swarna S	ub-1		
	5	23.46	
Salt 1 Pyimyanmarse	in		
	5	23.554	
Flodding 2 Mekyut	5	33.452	
Local 1 Baygyar	5	34.828	
Zero Treatment Paws	anyin		
	5	39.918	
Local 3 Taungpyan	5	50.382	
Local 2 Kyarpyan	5	56.342	
Salt 3 Sinthwelatt			
	5	61.844	Salt 2 IR-11T255

Notes:

This report provides multiple comparison tests for all possible contrasts among the the means. These contrasts may involve more groups than just each pair, so the method is much stricter than need be. The Tukey-Kramer method provides more accurate results when only pairwise comparisons are needed.

			Analysis of Va	riance Repo	rt	
Page/Date/Time Database	1 18.01	.2018 13:25:21				
Response	Sample_I	Plot_Yield_Volu	me_Basket_acre	9		
Analysis of Varia	nce Table					
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Farmer No	4	739.5316	184.8829			
B: Variety	7	17826.3	2546.614	10.32	0.000002*	0.999991
AB	28	6909.111	246.754			
S	0	0				
Total (Adjusted)	39	25474.94				
Total	40					
* Term significant	at alpha = 0	.05				

		Analysis of Variance Report
Page/Date/Time	4 18.01.2018 13:	
Database		
Response	Sample_Plot_Yield	Volume_Basket_acre

Scheffe's Multiple-Comparison Test

Response: Sample_Plot_Yield_Volume_Basket_acre Term B: Variety

Alpha=0.050 Error Term=AB DF=28 MSE=246.754 Critical Value=4.0638

1 de la composición de	dan di		Different From
Group	Count	Mean	Groups
Salt 2 IR-11T255	5	17.692	Local 2 Kyarpyan, Salt 3 Sinthwelatt
Flodding 1 Swarna S	ub-1		
	5	21.99	Local 2 Kyarpyan, Salt 3 Sinthwelatt
Salt 1 Pyimyanmarse	in		
	5	28.188	Local 2 Kyarpyan, Salt 3 Sinthwelatt
Local 1 Baygyar	5	45.292	
Local 3 Taungpyan	5	50.602	
Zero Treatment Paws	anyin		
	5	55.74	
Local 2 Kyarpyan	5	72.608	Salt 2 IR-11T255, Flodding 1 Swarna Sub-1
			Salt 1 Pyimyanmarsein
Salt 3 Sinthwelatt			
	5	78.348	Salt 2 IR-11T255, Flodding 1 Swarna Sub-1
			Salt 1 Pyimyanmarsein

Notes:

This report provides multiple comparison tests for all possible contrasts among the the means. These contrasts may involve more groups than just each pair, so the method is much stricter than need be. The Tukey-Kramer method provides more accurate results when only pairwise comparisons are needed.

Yield t/ha (WP)

Boyargyi

Friedman Test Section

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	25.200000	9	0.002758	0.560000
Correction	25.230583	9	0.002726	0.560680
Multiplicity	6			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 11:45:18
Database	Whale Diet Vield Weight the
Response	Whole_Plot_Yield_Weight_t_ha

wears and En	ecis Seci							andard			
Term			1.1	Count	Me	an		ror		Effect	
All				50		705				1.5705	
A: Farmer_No				00	1.0					1.0100	
				10	4.05	70	0			0 4005	
6				10	1.9		0			0.4025	
7				10	2.4	65	0			0.8945	
8				10	1.40	695	0			-0.101	
9				10	1.3	28	0			-0.2425	
10				10	0.6		0			-0.9535	
B: Variety				2.4						10100.51	
Flodding 1 Swa	rna Sub-1			5	1.00	05	0.3	254438		-0.5655	
Flodding 2 Mek				5	1.4			254438		-0.0995	
		- 00									
Flodding 3 IR-8		5.30		5	1.10			254438		-0.4695	
Local 1 Baygya	r			5	1.80	08	0.3	254438		0.2375	
Local 2 Kyarpya	n			5	1.92	2	0.3	254438		0.3495	
Local 3 Taungpy				5	1.8		0.3	254438		0.3025	
Salt 1 Pyimyann				5	1.1		0.1	254438		-0.4555	
Salt 2 IR-11T25				5	0.64			254438		-0.9255	
Salt 3 Sinthwela				5	2.50			254438		0.9895	
Zero Treatment	Pawsanyi	n		5	2.20	07	0.2	254438		0.6365	
Yield WP t/ha	Zero Treatm Loc	al 1 Bayg Lo	cal 2 Kyarr Loo	al 3 Taun, Sal	t 1 Pyimy: Salt	2 IR-11T Sal	t 3 Sinthw Flo	dding 1 Sv Floo	dding 2 N F	lodding 3 IR-8464	9.1295.30
Zero Treatment Pawsanyin	0	6	0	2	21	27	7	22	9	16	
Local 1 Baygyar	6	0	6	5	15	21	13	16	3	10	
Local 2 Kyarpyan	0	6	0	2	21	27	7	22	9	16	1
Local 3 Taungpyan	2	5	2	0	19	26	9	21	8	15	
Salt 1 Pyimyanmarsein	21	15	21	19	0	7	28	2	12	5	
Salt 2 IR-11T225	27	21	27	26	7	0	34	5	18	11	
Salt 3 Sinthwelatt	7	13	7	9	28	34	0	29	16	23	
Flodding 1 Swarna Sub-1	22	16	22	21	2	5	29	0	13	6	
Flodding 2 Mekyut	9	3	9	8	12	18	16	13	0	7	
Flodding 3 IR-84649.1295.30	16	10	16	15	5	11	23	6	7	0	

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	38.661818	9	0.000013	0.859152
Correction	38.897561	9	0.000012	0.864390
Multiplicity	30			

Analysis of Variance Report 18.01.2018 13:27:45

Page/Date/Time	2	18.01.2018 13:27:45
Database		
Response	W	hole_Plot_Yield_Weight_t_ha

						Standard	
Term			Count	Mean		Error	Effect
All			50	1.5157			1.5157
A: Farmer No							
1 -			10	1.8035	i.	0	0.2878
2			10	1.6675		0	0.1518
3			10	1.4135	i	0	-0.1022
4			10	1.33		0	-0.1857
5			10	1.364		0	-0.1517
B: Variety							
Flodding 1 Swarna	a Sub-1		5	0.928		0.2937116	-0.5877
Flodding 2 Mekyut			5	0		0.2937116	-1.5157
Flodding 3 IR-8464			5	0		0.2937116	-1.5157
Local 1 Baygyar			5	2.217		0.2937116	0.7013
Local 2 Kyarpyan			5	2.654		0.2937116	1.1383
Local 3 Taungpyar	1		5	1.913		0.2937116	0.3973
Salt 1 Pyimyanma			5	0.988		0.2937116	-0.5277
Salt 2 IR-11T255			5	0.797		0.2937116	-0.7187
Salt 3 Sinthwelatt			5	2.901		0.2937116	1.3853
Zero Treatment Pa	awsanyin		5	2.759		0.2937116	1.2433
Yield WP t/ha	Zero Treatm Loc	al 1 Bayg L	ocal 2 Kyarr Loca	il 3 Taun, Salt 1	Pyimya Sa	It 2 IR-11T Salt 3 Sinth	w Flodding 1 Swarna Sub-1
Zero Treatment Pawsanyin	0	5	0	9	22	25	2 22
Local 1 Baygyar	5	0	5	4	17	20	3 17

Zero Treatment Pawsanyin	0	5	0	9	22	25	2	22
Local 1 Baygyar	5	0	5	4	17	20	3	17
Local 2 Kyarpyan	0	5	0	9	22	25	2	22
Local 3 Taungpyan	9	4	9	0	13	16	7	13
Salt 1 Pyimyanmarsein	22	17	22	13	0	3	20	0
Salt 2 IR-11T225	25	20	25	16	3	0	23	3
Salt 3 Sinthwelatt	2	3	2	7	20	23	0	20
Flodding 1 Swarna Sub-1	22	17	22	13	0	3	20	0

Yield t/ha (SP)

Boyargyi

		man and	Analysis of Var	iance Repo	rt	
Page/Date/Time Database	1 18.01	.2018 12:03:54				
Response	Sample	Plot Yield Weig	aht t ha			
Analysis of Varia	nce Table					
Source		Sum of	Mean		Prob	Power
Term	DF	Squares	Square	F-Ratio	Level	(Alpha=0.05)
A: Farmer No	4	22.49987	5.624969			
B: Variety	9	28.55675	3.172972	4.42	0.000602*	0.990645
AB	36	25.83088	0.7175243			
S	0	0				
Total (Adjusted)	49	76.8875				
Total	50					
* Term significant	at alpha = 0	.05				

Scheffe's Multiple-Comparison Test

Response: Sample Plot Yield Weight t ha Term B: Variety

Alpha=0.050 Error Term=AB DF=36 MSE=0.7175243 Critical Value=4.4015

	1.000		Different From
Group	Count	Mean	Groups
Salt 2 IR-11T255	5	0.95	Salt 3 Sinthwelatt
Flodding 3 IR-84649.	1295.30		
	5	1.235	
Flodding 2 Mekyut	5	1.475	
Salt 1 Pyimyanmarse	in		
	5	1.53	
Flodding 1 Swarna Su	ub-1		
	5	1.64	
Local 1 Baygyar	5	2.08	
Local 3 Taungpyan	5	2.56	
Zero Treatment Paws	anyin		
	5	2.57	
Local 2 Kyarpyan	5	2.935	
Salt 3 Sinthwelatt			
	5	3.375	Salt 2 IR-11T255

Notes:

This report provides multiple comparison tests for all possible contrasts among the the means. These contrasts may involve more groups than just each pair, so the method is much stricter than need be. The Tukey-Kramer method provides more accurate results when only pairwise comparisons are needed.

	Friedman		Prob	Concordance
Ties	(Q)	DF	Level	(W)
Ignored	38.432727	9	0.000015	0.854061
Correction	38.714286	9	0.000013	0.860317
Multiplicity	36			

	Analysis of Variance Report
Page/Date/Time	2 18.01.2018 13:26:07
Database	
Response	Sample Plot Yield Weight t ha

							ndard						
Term			Count	Me	ean	Err	or	Effect					
All			50	2.0	335			2.0335	54				
A: Farmer_No													
1 -			10	2.1	225	0		0.089					
2			10	2.1	275	0		0.094					
3			10	20)55	0		0.0215					
4			10	1.8		õ		-0.193					
5			10		225	ŏ		-0.011					
			10	2.0	220	U		-0.011					
B: Variety Flodding 1 Swarna	Sub 1		5	1 /	45	0.2	207299	-0.588	5				
					40								
Flodding 2 Mekyut			5	0			207299	-2.033					
Flodding 3 IR-846	49.1295.3	30	5	0			207299	-2.033					
Local 1 Baygyar			5		05	0.3	207299	0.6715	1				
Local 2 Kyarpyan			5	3.9	3.99		0.3207299		1.9565				
Local 3 Taungpyar	yan		3 Taungpyan		5	2.215		0.3	0.3207299	0.1815	0.1815		
Salt 1 Pyimyanma													5
Salt 2 IR-11T255			5	0.9	0.985		0.3207299		5				
Salt 3 Sinthwelatt			5		45		207299	2.0115					
Zero Treatment Pa	weanvin		5	3.415			0.3207299		1.3815				
	awsarrynn			0.4	10	0.0	201233	1.0010					
ield SP t/ha	Zero Treatm	Local 1 Bayg	Local 2 Kyarr Lo	cal 3 Taun S	alt 1 Pyimya	Salt 2 IR-11T	Salt 3 Sinthw F	lodding 1 Swa	na Sub-1				
ero Treatment Pawsanyin	0	8	8	10	15	22	6	15					
ocal 1 Baygyar	8	0	16	2	7	14	14	7					
ocal 2 Kyarpyan	8	16	0	17	22	29	2	22					
ocal 3 Taungpyan	10	2	17	0	5	12	15	5					
alt 1 Pyimyanmarsein	15	7	22	5	0	7	20	0					
alt 2 IR-11T225	22	14	29	12	7	0	27	7					
Salt 3 Sinthwelatt	6	14	2	15	20	27	0	20					
Flodding 1 Swarna Sub-1	15	7	22	5	0	7	20	0					