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ABSTRACT 
Agricultural extension can have important impacts on vulnerable populations by increasing food 
production, which improves both rural incomes and urban food security. Yet, crises induced by violent 
conflict or disease outbreaks can sever the connections between extension agents and farmers. 
Understanding how agricultural extension systems can safely and effectively reach farmers in times of 
crisis could help stabilize agri-food systems in fragile states. In the context of COVID-19, a military coup, 
and an emergent threat of fall armyworm in Myanmar, this paper uses a randomized controlled trial to 
test the effectiveness of two cellphone-based extension interventions – a direct-to-farmer and a lead-
farmer intervention – for fall armyworm control in maize. Despite low compliance, both interventions 
caused knowledge improvements. However, damage control estimates show that the lead-farmer group 
used pesticides most effectively. Similar cellphone-based lead-farmer programs could be an effective 
tool in fragile states and when faced with emergent threats to agriculture. 
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1. INTRODUCTION 
Agricultural extension can have direct and important impacts on vulnerable populations, affecting 
both rural livelihoods and urban food security through technology adoption (Yitayew et al., 2021) 
and increased agricultural production (Evenson, 2001). But in fragile states, attention and funding 
are justifiably diverted away from extension services towards more immediate concerns. At the 
same time, crises induced by violent conflict or disease outbreaks can sever the connection 
between farmers and extension agents, preventing safe delivery of information (Kimenyi et al., 
2014). Though not the central concern in a crisis, the lost benefits from extension services may 
exacerbate or prolong the negative impacts of conflict as farming and the broader agri-food 
system are especially important in such situations (Uwishema et al., 2022). Understanding how 
agricultural extension systems can safely and effectively deliver information within restricted 
budgets in times of crisis could help mitigate losses and help stabilize agri-food systems in fragile 
states.  

This paper tests the effectiveness of two remote agricultural extension programs implemented 
during the dual crises of COVID-19 and a military coup, and an emergent threat of fall armyworm 
on maize production in Myanmar. We use a randomized controlled trial (RCT) to identify the 
causal impacts of the extension campaign on farmer knowledge, behaviors, and farm technical 
efficiency during the 2021 monsoon season. The extension programs delivered information to 
maize farmers on the identification and management of fall armyworm. A recent arrival in 
Myanmar, fall armyworm (FAW) came to Southeast Asia in 2019 after migrating from Africa, 
where it became widespread and a major production threat just three years prior (De Groot et al., 
2020; Rijal, 2019). Fall armyworm can cause large yield declines especially when effective control 
measures are not taken (Day et al., 2017). Similar instances of migrating pests and other new or 
emergent threats to agricultural production may become more common as the climates change 
(Skendžić et al., 2021). Agricultural extension is especially urgent and significant in these contexts 
as farmers are unable to rely on individual or collective experience: new information must be 
distributed quickly to mitigate the losses from the new threats. 

At the time of the study, COVID-19 and the military coup presented immense obstacles to 
agricultural extension. In-person delivery of information was infeasible for three reasons; (i) 
agricultural extension agents (along with most other government employees) were on strike and 
not actively serving their rural communities, (ii) movement into and within the study region was 
disrupted by COVID-19 travel restrictions and lockdowns, and (iii) there were risks of violence or 
arrests following the military coup. On top of these obstacles to in-person information delivery, 
the military blocked mobile (cellphone) internet for several months thereby preventing the use of 
mobile phone applications for information delivery.  

However, cellular networks for direct messaging or phone calls (i.e., not through internet 
applications) were largely uninterrupted allowing us to use two short message service (SMS) 
based extension interventions for our study. The first – direct SMS messages to farmers – has 
been used in multiple contexts, while the second – a lead-farmer SMS program where SMS 
messages are sent to lead farmers who are then tasked with distributing that information to other 
farmers in their villages – is an innovation attempting to combine benefits of rapid SMS information 
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delivery with the documented benefits of a lead-farmer program. By randomly assigning villages 
into either one of these treatment arms or a control group, this paper avoids selection problems 
and identifies the causal impacts of the information intervention on FAW knowledge, control 
behaviors, and input efficiency. 

There is very little evidence on extension program efficacy or impact during a coup, but in 
general the use of information and communication technologies (ICT) – e.g., radio, videos, SMS, 
and application-based phone programs – have been found to be effective in reaching farmers 
when face-to-face agricultural extension visits are not an option (Larochelle et al., 2016; Fu and 
Akter, 2016; van Campenhout et al., 2017) or as a complement to face-to-face extension service 
(Maredia et al., 2017). These methods are cost-effective, and can reach farmers with information 
more frequently and with tailored information specific to a timeframe in the agricultural production 
calendar (Aker, 2011; Fafchamps and Minten, 2012; Deichmann et al., 2016). Sharing timely 
information with farmers is especially important in response to a new disease or pest outbreak, 
such as FAW. In Uganda, Tambo et al. (2019) found that utilizing a mix of radio, video, and SMS 
to reach farmers led to improved knowledge of FAW identification management. Similar results 
were found when radio was used to disseminate FAW knowledge and management practices to 
farmers in Zambia (Rware et al., 2021).  

ICT extension programs typically substitute the depth and detail of in-person information for 
rapid dissemination and scalability to reach a wide audience quickly. Conversely, lead-farmer 
extension programs effectively do the opposite by providing detailed information to lead-farmers 
and then tasking them with distributing or sharing that information with farmers in their 
communities. RCTs of lead-farmer programs show that they can effectively change farmer 
knowledge and behaviors, though knowledge gains can be uneven across information topics 
(Goeb and Lupi, 2021). Benyishay and Mobarak (2019) show that incentivizing farmer trainers to 
distribute information can increase impact.  

This paper makes three principal literature contributions. First, we provide, to our knowledge, 
the first controlled test of extension programs during severe insecurity induced by a coup. In such 
contexts when traditional extension lines are broken, it is important to understand how to 
effectively reach farmers with information. Second, this paper adds to the lead-farmer extension 
literature by testing the efficacy of a remote information transfer to farmers through lead farmers 
contacted by SMS. While this adapted lead-farmer method is not well-suited for some contexts, it 
may combine the in-person depth of information from conventional lead-farmer programs with the 
rapid scalability and cost-efficacy of ICT extension programs, reaching farmers with information 
from a credible source at a time when outsiders are not trusted. Third, we provide, to our 
knowledge, the first causal test of extension interventions on the efficacy of pest control practices 
using a damage control specification. We apply a two-stage semi-parametric approach that allows 
us to identify differences in the impacts of pesticide use on technical efficiency across treatment 
group assignments.  

As a preview of our results, our analysis shows significant improvements in farmer knowledge 
attributable to both extension programs. Yet, there are differences across the two extension 
groups in the areas of knowledge improvement, and in practices and outcomes. The lead-farmer 
group demonstrated greater knowledge of pesticide action thresholds than both the control group 
and the SMS group. Putting the knowledge to practice, the lead-farmer group used pesticides 
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more effectively than both the SMS and control groups. Our results demonstrate that remote lead-
farmer information dissemination mechanisms can be effective – and more effective than direct 
SMS campaigns – in a time of high distrust and crisis, and in the context of an emergent threat to 
crop production.  

Lastly, extension information may be a relatively fast and low-cost way to improve farmer 
welfare in the face of a new production threat and in fragile states, but future research should 
compare the impacts and cost effectiveness of other farm interventions such as cash transfers. 

This paper proceeds as follows. In the next section, we provide background details on COVID-
19 and the military coup in Myanmar, as well as on maize production and FAW. Section 3 
describes our data, the experimental design, and the information intervention. We then lay out 
our empirical methods including our application of the Simar and Wilson (2007) estimation 
procedure incorporating damage control and technical efficiency. Section 5 then presents our 
estimates of the causal impacts of the information intervention on farmer knowledge, pest control 
practices, and maize production. In the conclusion, we discuss the implications of this work for 
future extension programs in fragile states characterized by violence and instability. 

2. BACKGROUND 
2.1 Crises in Myanmar 
In early 2020, Myanmar began experiencing COVID-19-related disruptions and the government 
was quick to respond with policies to both curb the potential spread of the disease and to mitigate 
its impact on the local economy. Throughout the ongoing pandemic, localized lockdowns and 
movement restrictions have been implemented intermittently including stay-at-home orders, 
closing public transportation and limiting the number of people gathering (Diao et al, 2020). These 
policies have been enforced at very localized levels (Goeb et al. 2022a) that often overlap and 
compound transport disruptions. To support the economy, the democratically elected government 
developed a Comprehensive Economic Recovery Plan (CERP) in 2020 with several policies 
designed at supporting agri-food system (Maredia et al., 2022). The economic impacts of COVID-
19 were widespread, but throughout 2020 the agri-food system demonstrated resilience 
(Boughton et al. 2021; Goeb et al. 2022b).  

Hopes of a fast recovery from COVID-19 were halted by the military coup on February 1, 2021. 
The military junta seized full control of the government and civilians responded with protests and 
a general strike against the military regime known as the Civil Disobedience Movement (CDM). 
The CDM affected most public services including many hospitals and schools that closed as staff 
participated in peaceful and non-violent protests against the military takeover (Han et al., 2021). 
After a period of allowing peaceful protests, the military violently cracked down on dissidents. The 
economy subsequently collapsed, and GDP contracted by 18 percent (World Bank, 2022). The 
once resilient agri-food system began showing signs of cracking as consumer food prices 
increased (MAPSA, 2022). One of the main coping mechanisms households cited to manage 
income loss during this time was the reduction of food consumption (Heady et al. 2020; Lambrecht 
et al. 2020). Unsurprisingly, food insecurity rose with as many as 30 percent of women reporting 
not having eaten enough healthy food in the past month and 8 percent reporting having run out 
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of food in urban areas; these numbers were roughly half for rural households (Headey et al., 
2020).  

Following the coup, obstacles to extension were multiple and severe. First, many agricultural 
extension agents were participating in the CDM and thus were not serving rural communities in 
their usual capacities. Second, movement around Myanmar was impeded by lockdowns and 
transportation restrictions related to COVID-19 as well as security and safety risks following the 
coup. Third, extensive disruptions to cellphone internet services, including a continuous 
nationwide blockage for several months ordered by the military, inhibited the digital sharing of 
information. 

The end result was a complete severing of information flows to farmers at a crucial time: when 
farmers were preparing to plant their monsoon crops, and during just the second full season of 
FAW’s presence in the country. 

2.2 Maize production and fall armyworm 
Maize is Myanmar’s second most important crop with more than one million acres planted 
annually and accounting for 8-9 percent of annual crop value between 2015 and 2019. The maize 
sector grew rapidly under the democratic government, and the number of maize growing 
households in Shan state – which accounts for about 60 percent of national maize production – 
tripled in the ten years to 2017 (Fang & Belton, 2020). Maize is grown as a cash crop supplying 
the domestic feed industry and sold as exports via land to China and, more recently, Thailand.  

Fall armyworm arrived in Myanmar and broader Southeast Asia in late 2018 (Rijal et al., 2019). 
Native to the Americas, FAW migrated to Asia from Africa where it arrived in force in 2016 
(Goergen et al., 2016; De Groot et al., 2020). Literature shows extensive FAW prevalence 
spanning both continents and impacting over half of maize plots in some areas (Lamsal et al., 
2020; Hailu, et al., 2018). Estimated yield losses from FAW range widely from 11 percent to 54 
percent (Baudron et al., 2019; DeGroot et al., 2020). A review of 12 African maize-producing 
countries estimated that in the absence of control methods, FAW has the potential to decrease 
annual maize production by 21-53 percent, which equates to economic damages of between 
US$2.5-6.2 billion (Abrahams et al., 2017). In some cases, yield loss and costs of controlling FAW 
led to farmers ceasing to produce maize altogether. 

Damage from FAW can be mitigated with timely identification and proper control methods 
(Tambo et al., 2019). FAW control strategies include agronomic practices (minimum till, regular 
weeding, or intercropping with certain crops), mechanical methods (handpicking of larvae, light 
traps, or pheromone lures), and chemical controls (spraying of pesticides) which are often the 
most common practice (Rajil et al., 2019; Tambo et al., 2020b). Pesticide use for FAW control, 
like other integrated pest management practices, is framed around action thresholds. If farmers 
observe FAW incidence rates above the thresholds, they are recommended to apply pesticides. 
But below the thresholds, farmers are recommended to use less costly methods of control. 
Because there are different thresholds at different growth stages in maize, proper FAW control is 
information intensive, and farmers often have incomplete knowledge. Cited avenues for 
increasing farmer knowledge of FAW control include agricultural extension agents, media 
sources, and farm neighbors (Kumela, 2018; Tambo et al., 2020a).  
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3. DATA AND EXPERIMENTAL DESIGN 
3.1 Data 
Within Myanmar this study focuses on 9 townships in southern Shan and northern Kayah states 
for their high densities of maize farmers (shown in Figure 1 with the final sample achieved in each 
township). The Department of Population provided an initial sample frame of 80 Enumeration 
Areas (EAs) or villages in these regions designed to be representative of rural households. Military 
checkpoints and movement restrictions made travel into and out of the study area infeasible. To 
conduct a listing of maize-growing households with active cellphones in each village, we 
leveraged local connections living in the region to visit village leaders, and where feasible, visit 
households. A total of 4,273 households that grew maize and owned a cellphone were listed. To 
ensure that cellphone numbers were correct and working, to register households in our survey, 
and to collect basic household information and assess farmer knowledge, we attempted to reach 
each listed household via phone call in early June 2021. We successfully connected with 1617 
maize-growing households in 61 villages,1 which we call our registry which serves as our sample 
frame for our experimental design.  

Figure 1. Study region map, final sample by township 

 
Source: Author calculations 

 
1 The number of maize farming households in each village ranged from 9 to 40. 
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The data used for this article come from three rounds of phone interviews covering the 2021 
monsoon production season conducted in June (pre-intervention), September (post-intervention), 
and December 2021, respectively. The survey instruments included the following modules: 
demographics and household characteristics, including maize farming practices and production 
during the 2020 season (June); extension (June); detailed knowledge assessments (June and 
September); and maize production practices and harvest quantities in monsoon 2021 
(December). Not all households had fully harvested their maize by the December interview. In 
those cases, we asked farmers about their expected harvest quantities on their unharvested 
maize areas.  

To assess farmer knowledge of FAW and control practices, we asked farmers 13 questions 
covering three key themes: scouting and identification, control actions and action thresholds, and 
pesticide controls (full list of knowledge questions in Appendix Table A1). To reduce the 
probability of farmers correctly answering questions without a real understanding of the subject, 
most questions were open-ended (i.e., not true-false or multiple choice). For analysis, we create 
simple indices as the sum of correct responses to questions in each of the three thematic areas 
and overall (the three themes combined). 

There was some attrition between the registry and the baseline, as well as across interview 
rounds such that the final sample for analysis consists of 1114 households (Table 1). The attrition 
rates highlight the challenges in reaching rural households via cellphone, especially in the context 
of Myanmar during the military coup. With a steep decline of trust under military control, farmers 
may have been more likely to ignore calls from unknown numbers. Comparisons of attrition 
households to those successfully reached for interviews show no evidence of biases across 
treatment groups (Appendix Table A2). 

Table 1. Household samples and attrition by round and by treatment assignment 

  Households interviewed  Attrition 

 

 
Registry 

(June 
2021) 

Round 1 
(June 2021) 

Sample 
for 

analysis 
 

Registry 
to Round 

1 
[(1) - (2)] 

Round 1 to 
Sample for 

analysis 
[(2) - (3)] 

   (1) (2) (3)  (4) (5) 
All  1617 1267 1114  350 153 
By treatment assignment        

Control  526 418 362  108 56 
T1 - Direct SMS  533 414 370  119 44 
T2 - Lead farmer SMS  558 435 382   123 53 

‘Registry’ is the list of all farmers for whom we were able to confirm an active cellphone number. ‘Sample for analysis’ is the 
panel observations with data from each of the three interview rounds. ‘Attrition’ observations are households dropped from the 
sample due to unsuccessful attempts to reach them for follow-up interviews. 

 

 

 



11 
 

3.2 Experimental design 
To identify the causal effect of each extension program, we randomly assigned villages to one of 
three groups: direct SMS, lead-farmer SMS, or control. By randomizing at the village level (as 
opposed to the farmer level) we reduce potential spillovers of information from the treatment 
groups to the control group. Randomization ensures that receipt of information and the extension 
method are orthogonal to household characteristics by design. Still, it can be helpful to test for 
significant differences across the groups to establish whether the groups are well-balanced prior 
to the interventions.  

Table 2 shows that our sample is indeed well-balanced across treatment group assignment. 
For each of the 27 variables tested, we fail to reject the null that the averages for all three groups 
are equal. Especially important to this study, variables on cellphone ownership and use, 
knowledge, and maize production and practices are not significantly different across groups. 
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 Table 2. Sample descriptives and balance tests of random group assignment 

 All sample 
(n=1114) 

 Control group 
(n=362) 

 T1: SMS group 
(n=370) 

 T2: Lead Farmer 
group (n=382) 

 
Test of equal 

means: 
C=T1=T2 

 Mean Std Dev  Mean Std 
Dev 

 Mean Std 
Dev 

 Mean Std Dev  p-value 
Household characteristics              
# of household members              
Total 4.9 (1.7)  5.1 (1.8)  4.9 (1.8)  4.8 (1.7)  0.370 
Male 2.4 (1.2)  2.5 (1.2)  2.4 (1.2)  2.3 (1.2)  0.248 
Female 2.5 (1.2)  2.5 (1.2)  2.5 (1.2)  2.5 (1.2)  0.823 
Self-reported occurrence of violence in area since coup (%) 17.3 (37.9)  16.9 (37.5)  15.9 (36.7)  19.1 (39.4)  0.938 
Land area owned (acres) 9.4 (8.9)  9.8 (9.1)  9.2 (7.8)  9.2 (9.8)  0.869 
Respondent information              
Female respondent (%) 16.9 (37.5)  16.6 (37.2)  19.2 (39.4)  14.9 (35.7)  0.585 
Respondent age  39.2 (12.1)  39.8 (12.6)  38.8 (11.8)  38.9 (12.0)  0.672 
Education (%)              
Completed high school or above 17.1 (37.7)  16.9 (37.5)  17.3 (37.9)  17.3 (37.9)  0.990 
Never attended school 5.0 (21.9)  6.4 (24.4)  4.1 (19.7)  4.7 (21.2)  0.436 
Monastery only 13.8 (34.5)  13.3 (34.0)  12.2 (32.7)  16.0 (36.7)  0.638 
Able to read/type cell messages in Burmese (%) 91.4 (28.1)  92.0 (27.2)  93.5 (24.7)  88.7 (31.6)  0.114 
Mobile Phone Ownership and Usage (HH level)              
# of Operating cellphones owned 2.2 (1.2)  2.3 (1.2)  2.2 (1.2)  2.2 (1.2)  0.619 
# of Smartphones owned 1.8 (1.2)  1.9 (1.2)  1.7 (1.2)  1.7 (1.1)  0.262 
Typical spending per month on mobile (HH level), Kyat 14,250 (13,625)  15,041 (14,035)  13,842 (12,279)  13,897 (14,449)  0.525 
Knowledge (pre-intervention)              
Know about FAW (%)  90.5 (29.4)  93.1 (25.4)  87.0 (33.6)  91.4 (28.1)  0.121 
Overall Knowledge Index [0,13] 2.36 (1.52)  2.40 (1.56)  2.32 (1.65)  2.35 (1.36)  0.938 
Sub-Index: Scouting and Identification Knowledge [0,5] 0.92 (0.84)  0.89 (0.81)  0.91 (0.89)  0.95 (0.80)  0.825 
Sub-Index: Action Threshold Knowledge [0,4] 0.83 (0.86)  0.88 (0.93)  0.79 (0.83)  0.81 (0.81)  0.795 
Sub-Index: Pesticides Knowledge [0,4] 0.61 (0.73)  0.62 (0.69)  0.62 (0.76)  0.60 (0.72)  0.951 
Maize history              
Experience (# years since HH first cultivated, including 2021) 12.3 (8.3)  12.0 (7.4)  12.8 (9.3)  12.1 (8.1)  0.732 
Experienced FAW in last 3 years, all HHs (%) 60.3 (48.9)  60.5 (49.0)  61.1 (48.8)  59.4 (49.2)  0.889 
2020 Monsoon Season                 
Acreage cultivated, all crops 9.0 (8.7)  9.6 (10.0)  9.0 (7.7)  8.5 (8.2)  0.748 
Acreage cultivated, maize only 6.5 (7.6)  7.5 (9.4)  6.2 (6.1)  5.9 (7.0)  0.416 
Maize yield (kg/acre) 1,866 (823)  1,831 (795)  1,832 (824)  1,935 (847)  0.589 
Planted purchased maize seed, % 99.1 (9.7)  99.4 (7.5)  99.2 (9.2)  98.6 (11.8)  0.642 
Quantity of urea applied on maize plots (in 50 kg bags) 5.8 (8.1)  6.4 (9.0)  5.5 (7.1)  5.6 (8.2)  0.770 
Quantity of compound fertilizer applied on maize plots (in 50 

kg bags) 9.7 (13.8)   10.9 (15.1)   9.2 (12.6)   8.9 (13.5)   0.707 

Test of equal means across group assignment is an F-test of equality across groups with village clustered standard errors. All variables are pre-intervention. 
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3.3 Information interventions 
FAW control in maize – and pest control more generally – is complex, and potential crop damage 
inflicted varies by maize growth stage. Thus, recommended control actions are conditional on 
plant growth stage as well as the level (or severity) of pest infestation. To understand these 
complexities and to make appropriate recommendations on controlling FAW, we sought advice 
from the Plant Protection Division of the Ministry of Agriculture, Livestock, and Irrigation, as well 
as literature from the Food and Agriculture Organization, and the United States Agency for 
International Development in Myanmar. To design the topics and messages for our information 
interventions, we partnered with a company that operated a well-known farmer cellphone 
application in Myanmar.  

After deliberations, we settled on four messages in our information interventions with three 
content themes – (i) FAW identification and scouting, (ii) pest incidence action thresholds and 
control methods, (iii) and pesticide toxicity and safety (Appendix Figure A1 shows the full set of 
messages in English). Message 1 contained an introduction to the program along with pesticide 
safety information. Messages 2, 3, and 4 contained information on each of the three themes. 
Message 1 was sent in mid-June. This was followed by three thematic messages. We timed each 
of the thematic messages following the modal maize production calendar such that the messages 
were sent at the relevant maize growth stage between the third week in June to the second week 
of July. Each message contained information on pesticide action thresholds for the specific growth 
stage – early vegetative, early whorl, and late whorl.  

These messages were delivered to farmers in a local language in one of two ways depending 
on treatment group assignment. In the direct SMS treatment group, we sent messages directly to 
farmers’ cellphones using the confirmed and active numbers. In the lead-farmer treatment group, 
we sent messages to lead-farmers – identified by village leaders during the household listing 
exercise – that were tasked with disseminating the information to the farmers in their villages. 
Lead-farmers were called prior to the program to confirm that they were reachable via cellphone, 
to explain the program, and to obtain their consent to participate as lead farmers.2 We provided 
a list of the other interviewed farmers in their villages along with cellphone contact information so 
lead farmers could provide them with information. Lead farmers were compensated for their 
participation with a 15,000 MMK (US$9.30, approximately two times daily wage rate for casual 
labor) token of appreciation at the onset of the program – given to build trust and to fund the cost 
of message delivery to other farmers – and an additional 1,000 MMK (US$0.60) payment per 
message delivered to farmers. We counted all information delivery methods to village farmers – 
in-person, phone call, or SMS – equally in compensating lead farmers.  

This lead-farmer program is a departure from the conventional lead farmer method in that there 
was no in-person training with the lead-farmers. Lead-farmers received information through SMS, 
which we acknowledge is not the ideal lead-farmer implementation method for many contexts. In 
Myanmar during the coup, this approach allowed us to quickly get information to farmers through 
a local and likely more trusted contact at a time when trust of outsiders was low. In other similar 

 
2 All lead farmers in the lead farmer treatment group were successfully reached prior to information dissemination and each agreed 
to participate in the program. 
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fragile state contexts, this may also be an attractive option especially because the method has 
low variable costs and can be easily scaled to other villages, crops, or sectors. 

4. EMPIRICAL FRAMEWORK 
4.1 Extension impacts on farmer knowledge 
Knowledge is the mechanism through which our extension programs may change behavior. To 
test the causal impacts of the extension interventions on farmer knowledge we use the following 
intention-to-treat (ITT) regression: 

𝑌𝑌𝑖𝑖,𝑣𝑣 = 𝑇𝑇𝑣𝑣𝜷𝜷 + 𝜀𝜀𝑖𝑖,𝑣𝑣  ,                                                             (1) 

where 𝑌𝑌𝑖𝑖,𝑣𝑣 is the dependent variable of interest, in this case an index of FAW knowledge at the 
endline survey for farmer 𝑖𝑖 in village 𝑣𝑣; 𝑇𝑇𝑣𝑣 is a vector of indicator variables for treatment group 
assignment – SMS, lead farmer, or control group (the excluded category captured as an 
intercept); and 𝜀𝜀𝑖𝑖,𝑣𝑣 is an iid error term clustered at the village level. We estimate (1) by ordinary 
least squares linear projection model which provides solid estimates of average effects on the 
outcome despite not matching the data generation process (Wooldridge, 2010). 

𝜷𝜷 is the coefficient vector of interest and will show the average difference in outcomes causally 
attributed to treatment group assignment. However, as shown later in section 5a, many farmers 
assigned to treatment did not actually receive information. To estimate the outcome changes for 
those farmers that did receive extension treatment – more specifically, for the compliers that 
received extension only through group assignment – we use the following instrumental variables 
local average treatment effect (LATE) estimation: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑣𝑣 = 𝑇𝑇𝑣𝑣𝜷𝜷𝑺𝑺𝑺𝑺𝑺𝑺 + 𝜀𝜀𝑖𝑖,𝑣𝑣𝑆𝑆𝑆𝑆𝑆𝑆 ,                                                (2) 

𝐿𝐿𝐿𝐿𝑖𝑖,𝑣𝑣 = 𝑇𝑇𝑣𝑣𝜷𝜷𝑳𝑳𝑳𝑳 + 𝜀𝜀𝑖𝑖,𝑣𝑣𝐿𝐿𝐿𝐿  ,                                                        (3) 

𝑌𝑌𝑖𝑖,𝑣𝑣 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆𝚤𝚤,𝑣𝑣� + 𝛽𝛽2𝐿𝐿𝐿𝐿𝚤𝚤,𝑣𝑣� + 𝜀𝜀𝑖𝑖,𝑣𝑣   ,                       (4) 

In the first stage (equations 2 & 3) we use random treatment assignment to instrument for 
actual receipt of extension through SMS (𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑣𝑣 ) and the lead farmer SMS program (𝐿𝐿𝐿𝐿𝑖𝑖,𝑣𝑣 ). 
Random assignment ensures that the instruments pass the exclusion restriction. In the second 
stage, the outcome variable is regressed on the predicted receipt of each extension type (𝑆𝑆𝑆𝑆𝑆𝑆𝚤𝚤,𝑣𝑣�  
and 𝐿𝐿𝐿𝐿𝚤𝚤,𝑣𝑣�). The result is a causal estimate of the impact of complying with each extension type on 
the outcomes of interest. Again, standard errors are clustered at the village level following our 
experimental design. 
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4.2 Practices and outcomes 
Knowledge changes are central to any extension program, but they are intermediate goals toward 
changes in behaviors and outcomes. While control practices taken after observing FAW are of 
interest, and a focal point of the extension messages, we cannot make direct comparisons in 
control practices across groups conditional on reporting FAW because we rely on self-reported 
FAW incidence data and the extension interventions included messages on FAW scouting and 
identification. Thus, reporting FAW is not orthogonal to the treatment group assignment, i.e., the 
treatments themselves likely impact the condition (reporting FAW) required for these practices to 
be implemented.  

However, we are able to estimate ITT and LATE regressions for differences in practices or 
outcomes for the entire sample and not conditional on observing FAW. Specifically, we test for 
differences in scouting and maize yields across treatment groups. By not conditioning on reporting 
FAW, we avoid biasing our sample and we preserve the causal interpretation of the treatment 
group estimates because randomization ensures that non-treatment related factors including 
actual – not reported – FAW incidence are balanced in expectation across treatment assignment.  

4.3 Damage control 
The overarching objective of our extension programs was more effective FAW control, but 
econometric estimates of pest control efficacy are complicated by the fact that control methods 
do not directly increase crop production, they reduce losses from pest pressure. Damage control 
estimations explicitly model these impacts by separating the productive inputs – i.e., variables 
that directly influence yield – and damage control inputs (Lichtenberg & Zilberman 1986). Under 
the usual assumption of separability,3 this can be represented as:  

𝑄𝑄 = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑧𝑧) ,                                                                     (5) 

where 𝑓𝑓(𝑥𝑥) is the production function with input vector 𝑥𝑥, and 𝑔𝑔(𝑧𝑧) is the damage control function 
with damage control input vector 𝑧𝑧.  

There is no consensus on the best damage control estimation method and there are tradeoffs 
to each approach. We elect to use a two-stage estimation procedure following the damage control 
examples of Kuosmanen et al. (2006) and Iqbal and Sial (2018) that can test damage control 
input effects for multiple groups, in our case treatment assignments.4 The general approach is to 
first estimate technical efficiency of each farmer using non-parametric data envelopment analysis 
(DEA). Then the second stage is to regress damage control variables on the technical efficiency 
scores. Two-stage methods have several benefits over parametric production function estimation 
of damage control. Principal among them is that DEA, unlike parametric methods, does not 
require functional form assumptions which can drive differences in estimated results (Saha, 
Shumway and Havenner, 1997; Carrasco-Tauber and Moffitt, 1992). Still, the DEA estimation 
procedure assumes a common production possibility frontier across farmers and requires that all 

 
3 For separability to hold, the production function must have constant returns to scale and independence between damage control 
input efficacy and direct inputs. Kuosmanen et al. (2006) show that these assumptions are not as restrictive as previously assumed, 
and that they do not imply zero marginal rate of substitution between direct and damage control inputs. 
4 For a more detailed discussion of the damage control estimation methods see Kuosmanen (2006). 
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input variables be strictly positive. In many contexts, a main drawback of using DEA is that it does 
not produce readily accessible (i.e., parametric) estimates of the impacts of inputs 𝑥𝑥 on production 
𝑄𝑄 . However, this is not a large concern in our application as the focus of the extension 
interventions was entirely on effective damage control - 𝑔𝑔(𝑧𝑧) in equation 5 – not on direct input 
productivity or response.  

In the first stage, we estimate the technical inefficiency scores of each household using DEA 
where the output is maize yield in kilograms per acre and the production input vector includes the 
plot size in acres, and per acre variables for total input costs and total labor days (both hired and 
household).5 The DEA procedure produces Farrell technical inefficiency scores 𝜃𝜃𝚤𝚤,𝑣𝑣� , which take 
values [1, ∞) where 1 is on the production possibility frontier and higher values reflect greater 
inefficiency in input use.  

The second-stage estimation is our primary interest, where we estimate the damage control 
impacts by regressing the log of technical inefficiency scores on pesticide use with the following 
form: 

ln�𝜃𝜃𝚤𝚤,𝑣𝑣� � =  𝛼𝛼 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑝𝑝𝑖𝑖
𝑇𝑇𝑣𝑣𝜹𝜹 + 𝑍𝑍𝑖𝑖𝝁𝝁 + 𝜀𝜀𝑖𝑖,𝑣𝑣    ,                                                  (6) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑝𝑝𝑖𝑖
𝑇𝑇𝑣𝑣  is a vector of the total expenditure of pesticides per acre applied on the plot 

for each treatment group (𝑇𝑇𝑣𝑣) as a separate variable, including but not limited to pesticides applied 
in control of FAW6;  𝑍𝑍𝑖𝑖 is a vector of weed control variables; and, as above, 𝜀𝜀𝑖𝑖,𝑣𝑣 is an iid error term 
clustered at the village level. The coefficient vector 𝜹𝜹 is our primary interest as it shows the 
relationships of pesticide use and log technical inefficiency for each group.  

To test for possible nonlinear impacts of pesticide expenditures, we also use the inverse 
hyperbolic sine (IHS) transformation of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥𝑝𝑝𝑖𝑖  which approximates the natural log 
transformation but includes values of zero. In this case, it is especially important to include the 
zero values of pesticide expenditure because not using pesticides when it is not economical – 
when incidence rates are below the action threshold – is an important part of our extension 
messaging. It is also important to include the full sample in testing for pesticide efficacy because 
the extension interventions could show benefits even for those plots where there was no observed 
FAW. One possible avenue for such an effect is in reducing uncertainty and decreasing pesticide 
use when no FAW is present. Thus, IHS is the preferred transformation, though interpretation of 
the coefficients is often not straightforward (Bellemare and Wichman, 2020). 

We note that excluding pest pressure information can introduce bias in estimated productivities 
of damage control inputs (Norwood and Mara 2003). However, we choose to exclude information 
on self-reported FAW pressure from our damage control estimations to avoid biasing the 
treatment effect estimates as described above.  

 
5 More detail on the first-stage estimation is in the appendix. As a robustness check on this first-stage specification, we disaggregate 
the variables in the production input vector 𝑥𝑥𝑖𝑖 to include the plot size (acres), per acre household labor days, and expenditures per 
acre on maize seed, urea fertilizer, compound fertilizer, and hired labor. However, to satisfy the strict positivity requirement we must 
introduce a separate issue by arbitrarily setting zero values to one.  
6 Pesticide expenditures are commonly used as a variable of pesticide use (see for example Kuosmanen et al., 2006 and Iqbal and 
Sial, 2018) in part because pesticide quantities are not easily calculated. Pesticides come in several formulations and with different 
concentrations of active ingredients. 
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The distribution of ln�𝜃𝜃𝚤𝚤,𝑣𝑣� � is truncated at 0, so we estimate (6) by Tobit regression following 
(Banker and Natarajan, 2008). Simar and Wilson (2007) argue that a bias corrected first-stage 
DEA (that moves even the most efficient households off the production possibility frontier) 
followed by a truncated normal regression is the appropriate estimation method for the data 
generating process. Following Liu et al. (2021) we employ both estimation methods as a 
robustness check but with one modification. We elect to cluster our standard errors at the village 
level according to our experimental design (Abadie et al., 2022) rather than implement the 
second-stage bootstrap procedure proposed by Simar & Wilson (2007) which controls for 
potential serial correlation biases (from the first to second stage) but does not account for 
clustered sample designs. We consider the possibility of underestimating the standard errors and 
therefore overstating statistical significance as the larger error to avoid. 

5. RESULTS AND DISCUSSION 
5.1 Compliance & reaching farmers 
Both information delivery methods show large room for improvement in reaching farmers (Table 
3), but the reasons for low compliance differ across methods. As one might expect, the SMS 
extension method had greater compliance than the lead-farmer method. Cellphone company data 
shows that all intended messages were successfully sent out to farmers’ cellphone lines, and 90 
percent of the messages that we could track were successfully delivered.7 Undelivered messages 
(10 percent) are then a factor in low compliance, but unopened, and later expired, or otherwise 
ignored messages are likely a more important influence. At a time of low trust following a coup by 
a military that historically spies on their people, unsolicited messages may not have been 
welcomed in some cases. In follow-up calls, we received reports of some farmers blocking or 
screening messages from unknown numbers.  

Table 3. Treatment Group Compliance 

Group Sample 
Assignment 

Sample that 
Took-up 

Treatment 
Compliance 

Rate (%) 
Control  362 -- -- 
SMS  370 111 30.0 
Lead Farmer 382 83 21.7 
Total Observations 1114 194   

Source: Fall armyworm phone survey 

For the lead-farmer intervention, we confirmed that all lead-farmers received their messages, 
along with their local farmer lists. However, they did not relay that information to all the intended 
recipients. The low compliance in the lead farmer extension intervention is more likely a selection 
problem where lead-farmers chose with whom to share information. Delivering the messages 
requires effort and time: after the intervention three quarters of lead farmers interviewed reported 
delivering information to farmers only once on average, despite being sent 4 separate messages 
at separate times that were intended to be shared individually, and despite the incentive of 1,000 

 
7 Note that telecommunications restrictions imposed in Myanmar limited the messages that we could track and we only have delivery 
information for 54 percent of all messages sent out.   
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MMK payment per message delivered to farmers (delivering 8 messages in a day would provide 
a return greater than the prevailing daily wage rate). The most common lead-farmer information 
sharing method as reported by local farmers was telephone calls (69 percent) followed by in-
person conversations (30 percent) and then SMS (5 percent).  

To begin our assessment of what farmers learned from the interventions, we asked them to 
report the main topic of the information received. Farmers complying with the lead-farmer 
extension program were much more likely to report pesticide action thresholds for FAW as the 
main message – 41 percent compared to just 25 percent for SMS compliers (Figure 2). A strikingly 
high percentage of the SMS group farmers reported that they do not know the main message (43 
percent). The same figure for the lead-farmer group was just 25 percent, and the improvement 
over the SMS group appears to be driven only by in-person information delivery. Within the lead-
farmer group, about 40 percent of farmers reached by either phone calls or SMS reported not 
knowing the main topic, compared to just 14 percent of those that had in-person conversations 
with lead farmers. Although these estimates suffer from selection biases, emphasizing in-person 
delivery of information within the lead-farmer mechanism is worth further study.  

Figure 2. Reported main topic of information received among compliers of each 
extension method 

 
Source: Author calculations 

5.2 Effects on farmer knowledge, scouting, and yield 
Despite low compliance, both extension treatment groups show significant knowledge 
improvements over the control group. Each treatment group coefficient in the ITT and LATE 
regressions on knowledge indices are positive (Table 4) thus showing higher average knowledge 
scores in each index for both extension treatments relative to the control group. In the overall 
knowledge index, both treatment groups show significant effects, and the knowledge gains are of 
similar magnitudes for both groups. In the LATE estimates which scale the effects to show the 
causal average impact for those that received information, overall knowledge scores are higher 
by 1.76 points in the lead-farmer group and 1.39 for the SMS group, amounting to a more than 
50 percent increase over the control group average scores. Thus, the knowledge regressions 
reveal that both direct SMS and a lead-farmer SMS program can effectively transfer information 
to farmers when conventional extension channels are cut, and internet is blocked.  

Yet, there are important differences in where the farmers show knowledge gains across 
delivery mechanisms. The Scout & ID index (which captures knowledge of scouting practices and 
FAW identification) shows similar magnitude effects for the SMS and lead-farmer groups, though 
the estimates are not significantly different from control group. We note that, among the 
component indices, the Scout & ID index had the highest average knowledge of the control group, 
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thus the interventions may have had relatively little room to improve farmer knowledge. This result 
is consistent with previous research and a Bayesian model of updating knowledge (Goeb and 
Lupi, 2021).  

Table 4. Intention-to-treat (ITT) and local average treatment effect (LATE) estimates of 
treatment on knowledge indices 

 Knowledge indices 

Dep Var Overall [0,13]  Scout & ID [0,5]  Action Threshold 
[0,4] 

 Toxicity [0,4] 
Estimator ITT LATE  ITT LATE  ITT LATE  ITT LATE 

 (1) (2)  (3) (4)  (5) (6)  (7) (8) 
SMS assignment 0.416**   0.157   0.098   0.161**  
 (0.166)   (0.107)   (0.066)   (0.066)  
 [0.011]   [0.104]   [0.159]   [0.036]  
Lead Farmer 

assignment 0.383**   0.124   0.199***   0.06  

 (0.184)   (0.083)   (0.067)   (0.068)  
 [0.018]   [0.136]   [0.004]   [0.380]  
SMS treated  1.388**   0.524   0.328   0.536** 
  (0.545)   (0.348)   (0.224)   (0.217) 
Lead Farmer 

treated 
 1.761**   0.57   0.916***   0.275 

  (0.865)   (0.375)   (0.335)   (0.314) 
Control group 

mean 2.74 2.74  1.23 1.23  0.95 0.95  0.56 0.56 

Underidentification 
test - 24.68***  - 24.68***  - 24.68***  - 24.68*** 

Coefficient 
equality test: 
SMS = LF 

0.87 0.68  0.77 0.91  0.194 0.086  0.213 0.427 

N 1114 1114  1114 1114  1114 1114  1114 1114 
R-Squared 0.015     0.011     0.010     0.014   
Note: Cluster robust SEs at the village level in parentheses. Randomization inference test p-values in brackets. For LATE analysis, 
"SMS Treated" and "LF Treated" variables are instrumented by "SMS Assignment" and "LF Assignment". * p<.1, ** p<.05, *** 
p<.01. Underidentification test is the Kleibergen-Paap rk LM statistic. Estimators in columns 1, 3, 5, and 7 are ordinary least 
squares. Estimators in columns 2, 4, 6, and 8 are instrumental variables. 

In the Action Threshold index (which captures knowledge of economic threshold knowledge 
for pesticide use on FAW) the lead-farmer group had significantly higher knowledge scores than 
the control group. Compliers of the lead-farmer program show average scores 2.8 times that of 
SMS group, and significantly higher than the SMS compliers (column 6). This confirms the main 
message results above, and together they suggest that the in-person information delivery was 
important for knowledge improvements. Conversely, the SMS group demonstrated higher 
knowledge scores in the Toxicity index (which shows knowledge of toxicity understanding and 
identification).  

Lead farmers may selectively share the information messages that they feel are most 
important, while the farmers that receive SMS messages may more easily retain information that 
is clear and easily understood. This pattern across knowledge indices appears to follow previous 
research on pesticide information in Africa showing that more complicated messages can be 
delivered more effectively in-person by trusted sources and that simple messages can be 
communicated through less formal mechanisms (Goeb and Lupi, 2021; Goeb et al., 2022c). 
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As explained in section 4.b we are limited in what practices and outcomes for which we can 
test for causal changes. Table 5 shows two such tests for scouting for FAW and maize yield. Both 
extension programs show higher shares of farmers scouting than the control group, though an 
already high share of the control group farmers (73 percent) scouted for pests in their maize plots, 
implying little room for information to increase scouting. Despite similar knowledge index changes 
across treatments, the lead-farmer group scouted at a higher rate than both the SMS group 
(significantly different and six times higher in the LATE estimate8) and the control group (random 
inference test significantly different in the ITT estimate). One possible explanation is that the 
knowledge change on toxicity action threshold – which shows strong improvements for the lead-
farmer group – also led to an increase in scouting through a heightened concern or awareness to 
the risks and need to take action.  

Overall yields are not significantly different across the three groups. Although the lead-farmer 
average yield is 81 kg/ac more than the control group and 153 kg/ac more than the SMS group, 
there are wide standard errors of the estimates and yields have wide standard deviations (nearly 
50 percent of the mean in 2020, Table 2).   

Table 5. Intention-to-treat (ITT) and local average treatment effect (LATE) estimates of 
treatment on scouting for fall armyworm and maize yield 

Dep Var Scouted for FAW [0,1]  Yield (kg/ac) 
Estimator ITT LATE  ITT LATE 

 (1) (2)  (3) (4) 
SMS assignment 0.014   -72.05  
 (0.041)   (96.920)  
 [0.704]   [0.183]  
Lead Farmer assignment 0.064   81.358  
 (0.042)   (126.127)  
 [0.082]   [0.182]  
SMS treated  0.047   -240.168 
  (0.136)   (323.096) 
      
Lead Farmer treated  0.294   374.445 
  (0.195)   (595.564) 
Control group mean 0.73 0.73  1,390 1,390 
Underidentification test  24.68***   24.68*** 
Coefficient equality test: SMS = LF 0.15 0.099  0.24 0.29 
N 1114 1114  1114 1114 
R-Squared 0.004     0.008   
Note: Cluster robust SEs at the village level in parentheses. Randomization inference test p-values in brackets. For LATE 
analysis, "SMS Treated" and "LF Treated" variables are instrumented by "SMS Assignment" and "LF Assignment". * p<.1, ** 
p<.05, *** p<.01. Underidentification test is the Kleibergen-Paap rk LM statistic. Estimators in columns 1 and 3 are ordinary least 
squares. Estimators in columns 2 and 4 are instrumental variables. 

 
8 Table A4 in the appendix shows that scouting is significantly associated with observing fall armyworm. While the differences in 
reported fall armyworm rates are insignificant across group assignments, failing to reject the null hypothesis (that the reported 
incidence rate is the same across groups) is not evidence that the null is true. The significant differences in scouting rates, together 
with scouting’s significant effects on reporting fall armyworm validate our decisions not to condition on reporting fall armyworm in our 
analyses.  
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5.3 Effects on maize technical inefficiency and damage control  
We now turn to the main results of interest, tests for the efficacy of pesticide use in damage control 
estimations (Table 6).9 The lead-farmer group is the only group to consistently show significant 
improvements in maize technical efficiency (or significant decreases in technical inefficiency) from 
pesticide use. The control group shows significant benefits from pesticides in one of four 
estimates while the SMS group results are insignificant in all four estimates. For the lead-farmer 
group, a 1,000 MMK increase in pesticide expenditure leads to an approximate yield increase of 
0.8-1.1 percent (columns 1 and 3). Because pesticides do not have a direct effect on maize 
production, yield improvement stems from more effective control of pests through improved timing 
and selection of pesticides.   

Table 6. Average partial effects of pesticide expenditures by treatment assignment 
 Ln (Technical inefficiency scores) 
 Two-stage DEA  Bias corrected DEA 
 (1) (2)  (3) (4) 

Pesticide expenditure by group (‘000 MMK/ac)     
Control assignment -0.005**   -0.002              
 (0.002)   (0.003)              
      
SMS assignment -0.003   0.000              
 (0.003)   (0.003)              
Lead Farmer assignment -0.011***   -0.008**              
 (0.004)   (0.004)              
Inverse hyperbolic sine of pesticide expenditure by group (‘000 MMK/ac)   
Control assignment  -0.031   -0.01 
  (0.020)   (0.021) 
      
SMS assignment  -0.015   0.002 
  (0.017)   (0.015) 
Lead Farmer assignment  -0.071**   -0.053* 
  (0.028)   (0.028) 
Covariates Yes Yes  Yes Yes 
Coefficient equality tests p-value      
SMS = LF 0.139 0.099  0.085 0.079 
Control = LF 0.265 0.254  0.234 0.218 
Control = SMS 0.594 0.549  0.545 0.630 
Number of Observations 1112 1112  1112 1112 
Notes: Cluster robust SEs at the village level in parentheses. Significance: * p<.1, ** p<.05, *** p<.01. Covariates are weed 
pressure variables: indicators for high and low weed pressure, and the number of complete weedings conducted on the plot. 
Coefficient equality tests are chi-squared tests. Columns 1 and 2 are estimated by Tobit regression and columns 3 and 4 are 
estimated by truncated regression (second stage). 

In three of four estimates, the lead-farmer group had significantly more effective pesticide use 
than the SMS group. This aligns with the significantly higher knowledge scores on pesticide action 
thresholds for the lead-farmer group. For the SMS group, the overall knowledge improvement but 
insignificant differences in action threshold knowledge do not lead to effective pesticide use in 
maize. We note that we fail to reject the null of equal efficacy in pesticide expenditures between 
control and treatment groups in each estimation. However, the coefficients are 2 to 5 times larger 
in magnitude for the lead-farmer group. Given the low compliance, it may be reasonable to expect 

 
9 Summary statistics of variables by group are presented in Appendix Table A3. 
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larger and more significant effects from reaching more farmers with information through the lead-
farmer mechanism.  

5.4 Robustness checks, extensions, and limitations 
We conduct alternative estimations to test the sensitivity of our results to two estimation decisions. 
First, we restrict the sample to only the maize plots that were fully harvested at the time of 
interview. This drops our sample size nearly in half, and our power along with it, but it removes 
any potential error or bias from farmers reporting expectations for a portion of their maize plots 
that were not yet harvested at the time of interview. Results in Appendix Table A5 show similar 
effect sizes and significance despite the lower power. We conclude that our decision to increase 
power by using harvest volumes comprised partially of expectations at the end of the growing 
season does not meaningfully change our results. 

Our second robustness check is to use an alternative specification of the first stage DEA 
estimation. In the alternative specification, we disaggregate the variables in the production input 
vector to include the plot size (acres), per acre household labor days, and expenditures per acre 
on maize seed, urea fertilizer, compound fertilizer, and hired labor. However, to satisfy the strict 
positivity requirement we must introduce a separate issue by arbitrarily setting zero values to 
one.10 Results in Appendix Table A6 show similar estimates as those shown in Table 6. The only 
meaningful difference is the damage control effects for the control group are significant in the 
bias-corrected DEA regressions, though the lead-farmer group estimates are still larger with lower 
p-values. Thus, our preferred DEA first-stage specification is not driving the estimated impacts of 
damage control efficacy. 

To put our estimates into context we take an admittedly imperfect step to compare the relative 
cost efficacies of each extension program (Table 7). We use a naïve approach to estimate the 
benefits of each program by assuming an increase in pesticide expenditures equivalent to US$1 
for all farmers and apply the average partial effect estimate for each group from Table 6, column 
1.  

The fixed costs of the design and management are the same for both methods, and the variable 
costs end up being quite similar as well: $816 for the SMS method and $796 for the lead-farmer 
method, mostly in lead-farmer incentives for distributing information. Lower compliance in the 
lead-farmer program means that the costs per farmer reached are higher than in the SMS method. 
However, the higher maize yield improvements in pesticide efficacy for the lead-farmer method 
imply a much larger benefit from the extension program from an assumed average increase in 
pesticide use of $1. The larger benefits drive much higher estimated returns for the lead-farmer 
extension method. The net value per targeted farmer was $23 for the lead-farmer method and $6 
for the SMS method.  

 
 

 
10  The changes made are in the input expenditure variables which are defined in MMK and have mean values of more than 20,000 
each. Thus, one is sufficiently small as an arbitrary value and close in meaning to zero.  
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Table 7. Costs and benefits comparisons of SMS and lead-farmer extension methods 
 Extension method 
 SMS Lead-farmer 

Costs   
Fixed costs   
Message design & development  $         3,000   $             3,000  
Management  $         2,000   $             2,000  
Variable costs   
SMS delivery costs  $            816   $                   20  
Lead-farmer communications   $                   25  
Lead-farmer payment    $                 771  
Costs per farmer targeted   
Total  $        15.72   $             15.22  
Variable  $           2.21   $               2.14  
Costs per farmer reached   
Total  $        52.40   $             70.07  
Variable  $           7.35   $               9.83  
Estimated benefits from 1USD increase in pesticide use 
Maize   
Total  $      10,106   $           34,499  
Per targeted farmer  $              27   $                   90  
Net value   
Total  $         2,368   $             8,964  
Per targeted farmer  $                6   $                   23  
Benefit-cost ratio   
Total 0.4 1.5 
Variable costs 2.9 11.0 
Notes: Costs exclude researcher time. Estimated benefits calculated as 𝐴𝐴𝑃𝑃𝑃𝑃𝚥𝚥� ∗ 1.62 ∗ 𝑌𝑌𝑖𝑖 ∗ 𝐴𝐴𝑖𝑖 where 𝐴𝐴𝑃𝑃𝑃𝑃𝚥𝚥�  is the average partial 
effect estimate for treatment group 𝑗𝑗 (column 1 in Table 6); 1.62 is USD to MMK exchange rate divided by 1000; 𝑌𝑌𝑖𝑖 is the 
maize yield for farmer 𝑖𝑖; and 𝐴𝐴𝑖𝑖 is the area of the maize plot. Net value is the value of additional maize output using the sample 
average maize price minus the assumed pesticide cost increase.  

While this paper contributes to our understanding of extension methods in times of crisis, there are 
limitations to our analysis, and we highlight three of them for further discussion here. First, there is room 
for improvement in the implementation of our tested interventions, most notably we had low compliance. 
While this does not affect the validity of estimates calculated as average effects across group 
assignment (not information receipt), it does lower both the average effects and statistical power, and 
in that way, may underrepresent the impacts of such programs if they are able to reach more farmers 
with timely delivery of information around their specific growing calendars. To address low compliance, 
we present the LATE estimates where possible. There is scope to further research lead farmers’ 
decision to share SMS messages with target farmers and incentive structures to positively influence that 
decision. Second, we rely on self-reported FAW incidence which is affected by the extension programs 
themselves through scouting and identification. Thus, we are not able to test the impacts of our 
interventions on the intermediate behaviors to control FAW. Given the context and fully remote nature 
of this study, there is little we could have done to eliminate this problem. Indeed, it is a problem for most 
pest incidence studies, but future research could address it with regular plot monitoring. Third, in our 
damage control estimations and our cost-benefit estimates we focus on maize production as the key 
outcome. However, there may be other important outcomes that we are not able to measure, e.g., 
environmental impacts, health risks, or gross margins. These remain areas for future research 
contributions. 
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6. CONCLUSION 
In this paper, we have explored the effects of two remote farmer extension programs to reduce the 
economic costs of an emergent pest during a crisis when traditional extension methods were infeasible 
due to political instability and COVID-19. By randomly assigning villages to receive either no information, 
information through SMS, or information through a novel SMS-based lead-farmer method, we ensure 
exogenous group assignment and therefore causal effect estimates. We conducted this experiment in 
Myanmar in 2021 during a military coup, and the information campaign addressed fall armyworm, a new 
threat to maize production.  

Our results show that both extension programs improved farmer knowledge, but in different ways. 
The SMS-group learned more in pesticide toxicity while the lead-farmer group learned more in pesticide 
action thresholds. Both effect sizes are 96 percent of the control group knowledge scores. These results 
are broadly in-line with previous findings on pesticide extension and knowledge (Goeb and Lupi, 2021; 
Goeb et al., 2022c). Importantly, the knowledge changes did not lead to noticeable improvement in 
practices for the SMS group, but the lead-farmer group was 6 percent more likely to scout than the 
control group. More importantly, the lead-farmer group used pesticides more effectively than the SMS 
group and the control group.  

Altogether, our results show the importance of information on pesticide action thresholds in the 
management of FAW, particularly when delivered by a peer-farmer within the community. Perhaps more 
important for policy, our results demonstrate that lead-farmer information dissemination mechanisms 
can be effective – and more effective than direct SMS campaigns – in a time of high distrust and crisis. 
Messages from unknown sources may not be an effective way to deliver information to farmers in such 
contexts. In particular, in-person delivery of information by lead farmers may be most impactful, though 
more research is needed there to understand the modes of communication they used and how to 
incentivize them to relay the messages to more farmers. The larger effect estimates of the lead-farmer 
method imply greater aggregate returns on expenditures relative to the SMS-group.  

Both interventions can be easily scaled to reach more farmers at low marginal costs, making them 
attractive investments at a larger scale than our experiment. However, implementing the direct SMS 
method requires a large database of farmer phone numbers to contact which is not cost-free to obtain. 
Governments could, at lower cost, allow farmers to self-select into a registry to receive such messages, 
of course with the tradeoff that only the registered farmers would benefit. Yet, this research shows that 
disseminating information through lead farmers, even without the ability to train lead farmers in person, 
could have a greater impact without the need for large farmer registries. Instead, governments or NGOs 
could work with extension staff to identify appropriate lead farmers and incentivize them to share 
information within their villages. 

We had low compliance in our information interventions and there is much room for design 
improvements to reach a larger share of the intended recipients and to increase impact. Future research 
should explore such design issues including making messages more targeted and direct, other 
innovative information delivery mechanisms through a known number, or different incentive schemes 
for lead farmer information sharing including higher payments for in-person information delivery. 

Lastly, extension information may be a relatively fast and low-cost way to improve farmer welfare in 
the face of a new production threat and in fragile states, but future research should compare the impacts 
and cost effectiveness of other farm interventions. Cash transfers may be a particularly important 
intervention to test in contexts of insecurity or in the presence of new threats requiring cash expenditures 
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for new inputs and in conflict areas where cellphone applications could be used for the safe transfer of 
money.  
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APPENDIX 
Table A.1 Knowledge assessments 

Question Response options 
Scouting and identification  

What is the recommended route/pattern to follow when scouting for FAW? Open-ended 
Where does fall armyworm mostly lay eggs? Open-ended 
What is the most common sign of fall armyworm damage on leaves? Open-ended 
What part of maize plant do young fall armyworm larvae most often show damage and frass? Open-ended 
How do you identify fall armyworm appearance and distinguish from other caterpillar pests? Open-ended 
Action threshold  

Out of 100 maize plants, how many should show FAW damage before applying chemical…  

At the establishment stage of maize growth (seeding to 2 weeks),  (0-100), don't know 
At the early whorl stage (knee high, 2-4 weeks old),  (0-100), don't know 
At the late whorl stage (shoulder high, 5-8 weeks old) (0-100), don't know 
After which maize growth stage, is it no longer recommended to apply pesticides? Open-ended, # of weeks 
Pesticides  

Do you know that there are beneficial insects that help control Fall armyworm? Yes/no 
How do you identify the toxicity (health risk) of a pesticide from its container? Open-ended 
How toxic/harmful to humans is a GREEN label pesticide under usual use? Very / Somewhat/ Not very 
How toxic/harmful to humans is a RED label pesticide under usual use? Very / Somewhat/ Not very 

Total knowledge index is sum total of correct responses. Three sub-indices are the sum of correct responses within each category. 
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Table A.2 Attrition bias tests across treatment groups 
 (1)  (2)  (3)  (4) 

HH Attrited Coef. SE  Coef. SE  Coef. SE  Coef. SE 
Group Assignment            
SMS  -0.027 (0.032)  -0.029 (0.032)  -0.031 (0.032)  -0.034 (0.032) 
Lead Farmer  0.010 (0.035)  0.011 (0.035)  0.008 (0.034)  0.009 (0.035) 
Demographic Characteristics            
No. of HH Members    0.011* (0.006)  0.011* (0.006)  0.016** (0.007) 
Female Farmer    0.027 (0.029)  0.025 (0.029)  0.028 (0.03) 
Farmer Age    -0.002** (0.001)  -0.002*** (0.001)  -0.002* (0.001) 
Attended Monastery School    -0.028 (0.03)  -0.026 (0.03)  -0.027 (0.031) 
Attended High School or More    -0.052* (0.028)  -0.053* (0.029)  -0.049* (0.029) 
Did not attend school    0.027 (0.057)  0.030 (0.057)  0.030 (0.058) 
Farm Characteristics            
Land area owned (acres)    -0.001 (0.001)  0.000 (0.002)  0.000 (0.002) 
Violence in area since coup    0.048 (0.031)  0.046 (0.03)  0.043 (0.031) 
Maize Cultivation Experience       0.001 (0.001)  0.001 (0.001) 
Maize Area Cultivated in 2021       -0.003 (0.002)  -0.003 (0.002) 
Experienced pests in last 3 years       -0.066 (0.048)  -0.068 (0.049) 
Information/Social Network Characteristics            
Aware of FAW          -0.01 (0.037) 
No. of Cellphones Owned          -0.019* (0.011) 
Read/type SMS messages in Burmese          0.057 (0.043) 
Has agricultural apps on phones          0.025 (0.025) 
Constant 0.199*** (0.022)  0.244*** (0.058)  0.305*** (0.067)  0.246*** (0.083) 
N 1,382  1,382  1,382  1,382 
R-squared 0.0015   0.0144   0.0182   0.023 
Note: Cluster robust SEs at the village level in parentheses. * p<.1, ** p<.05, *** p<.01 
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Table A.3 Output, input, and damage control variables for a household's main maize plot, by group assignment 

 
All sample 
(n=1114)  

Control group 
(n=362)  

T1: SMS group 
(n=370)  

T2: Lead Farmer 
group (n=382) 

  Mean  
Std 
Dev   Mean 

Std 
Dev   Mean 

Std 
Dev   Mean 

Std 
Dev 

Maize yield on main plot (kg/ac) 1395.8 (690.5)  1390.4 (630.4)  1321.9 (624.2)  1472.4 (792.3) 
Input variables            
Area of main plot (ac) 4.1 (3.7)  4.5 (4.4)  4.2 (3.4)  3.6 (3.4) 
Input costs ('000 MMK/ac) 135.3 (97.9)  137.3 (94.0)  131.0 (71.7)  137.5 (121.0) 
Total labor (days/ac) 11.2 (9.9)  10.7 (8.6)  11.4 (11.1)  11.6 (9.7) 
Damage control variables            
Pesticide expenditure ('000 MMK/ac) 9.0 (11.3)  8.8 (11.8)  7.9 (9.8)  10.2 (12.0) 
Low weed pressure on plot (i) 0.2 (0.4)  0.2 (0.4)  0.2 (0.4)  0.2 (0.4) 
High weed pressure on plot (i) 0.5 (0.5)  0.5 (0.5)  0.4 (0.5)  0.5 (0.5) 
Number of complete weedings 1.4 (0.7)   1.4 (0.7)   1.4 (0.8)   1.4 (0.7) 
Notes: Total labor includes both hired and household labor. Input costs exclude pesticide expenditures. (i) denotes indicator variable where 1=yes, 0=no. 
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Table A.4 Relationships of scouting and group assignment to reporting fall armyworm 
Dep Variable Report Fall Armyworm 

 (1) (2) (3) (4) 
Scout 0.206***  0.202*** 0.216*** 
 (0.037)  (0.038) (0.080) 
SMS assignment  -0.013 -0.016 0.000 
  (0.054) (0.053) (0.084) 
  [0.745]   
Lead Farmer assignment  0.066 0.053 0.068 
  (0.056) (0.055) (0.082) 
  [0.127]   
Scout X SMS    -0.022 
    (0.097) 
Scout X LF    -0.021 
    (0.097) 
Control group mean 0.49 0.49 0.49 0.49 
Coefficient equality test: SMS = LF  0.135 0.155 0.38 
Coefficient equality test: Scout X SMS = 

Scout X LF 
   0.984 

N 1114 1114 1114 1114 
R-Squared 0.031 0.005 0.035 0.035 
Note: Cluster robust SEs at the village level in parentheses. Randomization inference test p-values in brackets. * 
p<.1, ** p<.05, *** p<.01.  
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Table A.5 Only fully harvested plots - Average partial effects of pesticide expenditures by 
treatment assignment 

 ln (Technical inefficiency scores) 
Sample Two-stage DEA  Bias corrected DEA 

 (1) (2)  (3) (4) 
Pesticide expenditure by group (‘000 MMK/ac)     
Control assignment -0.004   -0.002              
 (0.004)   (0.005)              
      
SMS assignment 0.000   0.002              
 (0.004)   (0.005)              
      
Lead Farmer assignment -0.012***   -0.009**              
 (0.004)   (0.004)              
Inverse hyperbolic sine of pesticide expenditure by group (‘000 MMK/ac)  

Control assignment  -0.035   -0.02 
  (0.030)   (0.032) 
SMS assignment  -0.004   0.010 
  (0.024)   (0.025) 
Lead Farmer assignment  -0.077**   -0.060* 
  (0.038)   (0.037) 
Covariates Yes Yes  Yes Yes 
Coefficient equality tests p-values      
SMS = LF 0.074 0.122  0.085 0.121 
Control = LF 0.266 0.409  0.284 0.424 
Control = SMS 0.495 0.431  0.56 0.47 
Number of Observations 637 637  637 637 
Notes: Cluster robust SEs at the village level in parentheses. Significance: * p<.1, ** p<.05, *** p<.01. Covariates are weed 
pressure variables: indicators for high and low weed pressure, and the number of complete weedings conducted on the plot. 
Coefficient equality tests are chi-squared tests.  
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Table A.6 Alternative DEA specification: Average partial effects of pesticide expenditures 
by treatment assignment 

 Ln (Technical inefficiency scores) 
Sample Two-stage DEA  Bias corrected DEA 

 (1) (2)  (3) (4) 
Pesticide expenditure by group (‘000 MMK/ac)     

Control assignment -0.005**   -0.004*              
 (0.002)   (0.002)              
SMS assignment -0.003   -0.001              
 (0.003)   (0.002)              
Lead Farmer assignment -0.011***   -0.009**              
 (0.004)   (0.004)              
Inverse hyperbolic sine of pesticide expenditure by group (‘000 MMK/ac)  

Control assignment  -0.031   -0.031*   
  (0.020)   (0.016) 
SMS assignment  -0.015   -0.009 
  (0.017)   (0.013) 
Lead Farmer assignment  -0.071**   -0.064*** 
  (0.028)   (0.024) 
Covariates Yes Yes  Yes Yes 
Coefficient equality tests p-values      

SMS = LF 0.139 0.099  0.061 0.038 
Control = LF 0.265 0.254  0.215 0.231 
Control = SMS 0.594 0.549  0.382 0.29 
Number of Observations 1112 1112  1112 1112 
Notes: Cluster robust SEs at the village level in parentheses. Significance: * p<.1, ** p<.05, *** p<.01. Covariates are weed 
pressure variables: indicators for high and low weed pressure, and the number of complete weedings conducted on the plot. 
Coefficient equality tests are chi-squared tests.  
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Appendix Figure 1. Messages sent to farmers (English) 
Message 1 
Your household was recently called by phone about maize management practices. One aspect of management is to control fall armyworm, a 
caterpillar pest that can cause significant losses in maize. To help you control this pest, we will send you messages by SMS 4 times during the 
growing season.  This is the first message. These messages are sent by MSU, based on guidance from the Dept of Plant Protection and ImpactTerra 
(GoldenPaddy).  
FAW cannot be eradicated, it can only be managed and controlled. Pesticides are a useful tool to control FAW, but to maximize your farm profits, 
you should only spray if you observe FAW presence ABOVE the recommended action threshold according to growth stages 
Pesticide safety is essential. Always use pesticides safely by wearing PPE (e.g., gloves, boots), choosing less toxic pesticides, and following rec-
ommended safety and mixing practices provided on the packaging. 
Pesticides vary in their toxicity. The color labels at the bottom of pesticide labels signal the toxicity class. Red is Highly hazardous and Green is 
much less hazardous. When possible you should use less toxic pesticides. 
Message 2 
This is message number 2 on how to control Fall Armyworm. These messages are sent by MSU, based on guidance from the Dept of Plant Protection 
and ImpactTerra (GoldenPaddy). 
Scouting is necessary for quick detection of the presence of FAW. And should be done once every week at the seedling and early vegetative 
stages 
• Walk through the maize field at least 5 meters from the edges of your field  
• Scout zigzags the field, stopping at five different locations  
• At each stop, assess at least 10 plants looking for signs of FAW feeding. Common signs include: 

o Eggs underneath leaves 
o Larvae or frass inside the whorl 
o Glass-pane eating on leaves 

At 0-2 weeks stage: If you find FAW signs on 5 or more plants out of 50, then you should apply a biological pesticide such as B.t. or neem, so that 
you do not harm natural enemies. Always apply pesticides safely by wearing PPE (e.g., gloves, boots), 
If you find FAW signs on less than 5 plants out of 50, It is not profitable to spray. pick up and destroy the eggs and larva by hand  
Message 3 
This is message number 3 on how to control Fall Armyworm. These messages are sent by MSU, based on guidance from the Dept of Plant Protection 
and ImpactTerra (GoldenPaddy). 
At the early whorl stage (2-4) weeks, you should continue to scout for FAW once every week using the zig-zag pattern, stopping at 5 locations 
inside your field, and examining at least 10 plants at each location 
Common signs still include: 
• Eggs underneath leaves 
• Larvae or frass inside the whorl 
• Glass-pane eating on leaves 
You can distinguish FAW from other caterpillars because FAW has a Y-shape on its head, and 4 prominent dots on its back 
At 2-4 weeks: If you find FAW signs on 10 or more plants out of 50, then you should apply a recommended pesticides by Department of Plant 
Protection such as products with the active ingredients indoxacarb or emamectin benzoate products (e.g., Awba- Nget Gyi Taung; Awba-Alarm; or 
Armor Top Star).  Pesticides vary in their toxicity. The color labels at the bottom of pesticide labels signals the toxicity class. Red is Highly 
hazardous and Green is much less hazardous. When possible you should use less toxic pesticides. 
If you find FAW signs on less than 10 plants out of 50, it is not profitable to spray a pesticide 
Message 4 
This is the 4th and final message on how to control Fall Armyworm. These messages are sent by MSU, based on guidance from the Dept of Plant 
Protection and ImpactTerra (GoldenPaddy). 
Scouting should continue weekly. Continue to use a zig-zag pattern or a ladder pattern, check 5 spots, and at least 10 plants per spot 
Common signs of FAW to look for include 
• Eggs underneath leaves 
• Larvae or frass inside the whorl 
• Glass-pane eating on leaves 
At the late whorl stage, when 20 or more plants out of 50 show signs of FAW, you should apply a recommended pesticides by Department of 
Plant Protection such as products with the active ingredients indoxacarb or emamectin benzoate products (e.g., Awba- Nget Gyi Taung; Awba-
Alarm; or Armor Top Star).  Always apply pesticides safely by wearing PPE (e.g., gloves, boots). 
If you find signs of FAW on less than 20 plants out of 50, it is not profitable to apply a pesticide. You may hand pick. 
After your maize reaches the tasseling stage, you are not recommended to apply a pesticide to your maize. It could be dangerous and poisonous for 
the applicators and the natural enemies. So, pick up by hand and destroy or crush the eggs or caterpillars.  
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Data Envelopment Analysis 
The first-stage Data Envelopment Analysis method can be expressed as the following maximization 
problem for farm 𝑜𝑜 with 𝑛𝑛 other farms:  

max
ρ

𝜃𝜃  

Subject to: 

𝜃𝜃𝑦𝑦𝑜𝑜 ≤�𝜌𝜌𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

𝑥𝑥𝑜𝑜𝑘𝑘 ≥  �𝜌𝜌𝑖𝑖𝑥𝑥𝑖𝑖𝑘𝑘
𝑛𝑛

𝑖𝑖=1

,𝑓𝑓𝑜𝑜𝑓𝑓 𝑘𝑘 = 1, 2, 3 

𝜌𝜌𝑖𝑖 ≥ 0 

where 𝜃𝜃 is the maximized technical efficiency score, and the optimization chooses farm specific weights 
ρ to form linear combinations of other observed farms (i.e., not farm 𝑜𝑜) outputs 𝑦𝑦 and inputs 𝑥𝑥. We have 
only one output in our problem (maize yield in kg/ac) and three inputs (plot size, input costs per acre, 
and total labor days). The constraints ensure that the optimized output for farm 𝑜𝑜 is within a linear 
combination of observed farm outputs, and also that the linear combination of input use for the other 
farms does not exceed that of farm 𝑜𝑜.  

The maximization produces Farrell output-oriented technical efficiency scores, 𝜃𝜃� , taking values 
between one and infinity, where one is on the frontier and higher scores reflect greater inefficiency of 
input use. As explained in Kuosmanen et al. (2006), under usual assumptions, the DEA procedure 
produces consistent estimates of  the first (non-damage control) component of production 𝑓𝑓(𝑥𝑥)  in 
equation (5). More accurately,  𝜃𝜃� is a consistent estimate of 𝑄𝑄 / 𝑓𝑓(𝑥𝑥), which we use to form our outcome 
variable for the damage control estimation in the second stage.  
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