

Bern University of Applied Sciences

School of Agricultural, Forest and Food Sciences HAFL

Cost Benefit Analysis of the Gulf of Mottama Project, Myanmar

July 2018

Dominique GUENAT, PhD

Agricultural Economist, Head of the Group "International Agriculture" HAFL Zollikofen, Switzerland

Siham BOUKHALI, MBA,

Advisor Financial Sector Development and Business Management Helvetas, Switzerland

Implemented by

Funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Contents

Al	bbrevia	tions	1
E>	ecutive	e summary	2
1	Intro	oduction	4
	1.1	Background and objectives	4
	1.2 1.3	Theory of change	5 6
2	Met	hodology	6
	2.1	Paddy and Green Gram	6
	2.2	Fishery	7
	2.3	CEA for WASH	9
3	Resu	ults1	0
	3.1	Paddy1	0
	3.1.	1 Paddy value chain1	1
	3.1.2	2 Project key figures1	1
	3.1.3	3 Key parameters – paddy farmers1	1
	3.1.4	4 CBA results1	2
	3.2	Green Gram1	4
	3.2.3	1 Value chain1	4
	3.2.2	2 Farmers1	4
	3.2.3	3 Collector of green gram1	5
	3.2.4	4 CBA for green gram	5
	3.3	Fishery value chain1	7
	3.3.	1 Key parameters for fishermen1	7
	3.3.	2 CBA fisherman1	8
	3.3.3	3 Village fish collector1	9
	3.3.4	4 Key parameters for fish collectors1	9
	3.3.	5 CBA village fish collector2	0
	3.3.	6 CBA with administrated project funds2	0
	3.3.	7 CBA with administrated and management costs2	1
	3.3.3	8 Sensitivity analysis fishery value chain2	1
	3.4	Water, sanitation and hygiene (WASH)2	4
	3.4.:	1 Open pond water system in Mon State2	4
	3.4.2	2 Open well for household water	4

	3.4.3	3	Deep well for drinking water	.24				
	3.4.4	4	Water needs	. 25				
	3.4.	5	Cost calculation for the open pond system	. 25				
	3.4.6	6	Clustering WASH interventions by type	. 25				
4	Disc	ussio	n & recommendations	.26				
	4.1	Crop	os value chains	.26				
	4.1.:	1	Paddy	.26				
	4.1.2	2	Green gram	.26				
	4.2	Fish	ery value chain	. 27				
	4.3	WAS	бН	. 28				
	4.4	Ecoi	nomic analysis	. 28				
	4.4.	1	Economic analysis of the paddy value chain	. 28				
	4.4.2	2	Economic analysis of the green gram value chain	. 28				
	4.4.3	3	Economic analysis of the fishery value chain	. 29				
	4.4.4	4	Economic analysis of WASH sector support	. 29				
5	Ann	exes.		. 30				
	5.1	Ann	ex 1 TOR	. 30				
	5.2	Ann	ex 2 Glossary of terms used in CBA	.31				
	5.3	Ann	ex 3 CBA2 Paddy value chain	. 32				
	5.4	Annex 4 CBA3 Paddy value chain with administrated project funds						
	5.5	Ann	ex 5 CBA2 Green gram value chain aggregated	.34				
	5.6	Annex 6 CBA3 Green gram with administrated costs						
	5.7	Annex 7 CBA1, CBA2 Fisherman without and with project						
	5.8	Annex 8 CBA3, CBA4 Fish collector without and with project						
	5.9	Ann	ex 9 Fishery	. 38				
	5.10	Ann	ex 10 WASH Cost effectiveness analysis	. 39				

Abbreviations

Biodiversity and Nature Conservation Association
Benefit Cost Ratio (see also annex 2)
Cost Benefit Analysis
Cost Effectiveness Analysis
Swiss Franc
Coastal Natural Resources
Coastal Natural Resources Management Plan
Gulf of Mottama
Gulf of Mottama Project
Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften
International Non-Governmental Organisation
Internal Rate of Return (see also annex 2)
International Union for Conservation of Nature
Monitoring and Evaluation
Myanmar Kyat (currency)
Network Activity Group
Net Present Value (see also annex 2)
Revolving Fund
Spoon-billed Sandpiper
Swiss Agency for Development and Cooperation
Terms of References
US Dollar
Water, sanitation and hygiene
Yezin Agriculture University
Year

Executive summary

The Gulf of Mottama (GoM) in Myanmar is one of the most important and unique intertidal mudflat ecosystems in the world. Nowadays, this system is heavily under pressure due to climate change and human activities: its biodiversity but also its productivity (agriculture, fishery) is threatened.

The cost benefit analysis of the Gulf of Mottama Project (GoMP) was elaborated during a field visit of the consultants in May 2018. In agreement with SDC, the objective of the mandate formulated by Helvetas was to examine the cost effectiveness of four specific components of the project, namely the rice value chain, the green gram value chain, the fishery value chain as well as the WASH sector.

The project interventions for **paddy** and **green gram** are essentially focusing on primary production, with the introduction of improved varieties and the promotion of better practices. These interventions are expected to improve the yield and quality of the crops.

In the **fishery** value chain, the project focuses on fishermen's activities, with emphasis on specific equipment (ice boxes, appropriate nets) and practices for improved quality of the fish, as well as some activities in fish processing. In addition, the project is involved in a policy dialogue that should contribute to reducing illegal fishery, which is a major cause of the depletion of fish stock in the Gulf.

The **WASH** sector was introduced in the project at the beginning of phase 2, and there is not yet much information on this component yet. The main issues addressed by the project are drinking water supply, awareness raising for hygiene and waste management.

The CBA was done separately for each component, starting at the lowest level of users (farmers, fishermen) and comparing the situation with and without the project. Then the data was aggregated according to the project plans (number of farmers / fishermen involved over time) and the project administrated funds were included at this level of analysis. As a final step, the project management costs were added in a third step to assess the overall performance of the project towards the funds invested by the project and by the local stakeholders. For the WASH sector analysis, the lack of reliable data especially for the quantification of benefits lead us to opt for a Cost Effectiveness Analysis instead of the planned CBA.

The **CBA for paddy** at individual farmers' level shows that the project interventions are profitable, i.e. for the farmers it is worthwhile investing in these improved practices and varieties. The CBA model assumes a substantial yield increase with the project, of +500 kg/ac in direct seeding systems and +650 kg/ac when transplanting the paddy. At project level (including related administrated funds), the performance remains positive (IRR of 20.2%) but this is reached if the number of farmers involved reaches 3'000 after 4 years. Along with the improved performance of farmers, the value chain will benefit from an increased quantity of paddy of higher quality.

Paddy is an important crop in Myanmar, and there is a State subsidy (minimum producer price, access to credit). In an economic analysis, it is likely that the profitability observed in the financial analysis would the challenged.

The **CBA for Green Gram** at individual farmer's level is also positive and encouraging. After aggregating the individual CBAs, the result including related project administrated funds is still highly positive. This is partly due to the modest inputs of the project in the Green Gram value chain. Unlike paddy, Green Gram is not subsidized by the State, therefore the financial analysis is likely to be closer to the result

of the economic analysis. The sensitivity analysis shows that the green gram CBA is very robust: the CBA becomes negative if the yield increase with the project is +50kg/ac or less while we assumed a yield increase of +150kg/ac. Export markets seem to be secured for Green Gram, which is an additional asset for this value chain.

The **fishery sector** is very important for the peoples' livelihood in the Gulf. The declining fish stock was simulated in the CBA model when comparing the fishermen with and without the project. The analysis shows a clear advantage with the project, especially over time due to the assumption of a declining fish stock without the project and a stable fish stock with the project.

One problem observed while doing the analysis is that the "without – with" comparison shows positive results even if each option is unprofitable (e.g. very negative CBA for a fisherman without project, and a less negative CBA with the project) would result in a positive result for the project (as the situation has improved!).

Beyond the fishermen, we have also analysed the situation of fish collectors at village level. Here also, improved fish harvest (increased share of bigger, high quality fish and stable quantities) positively impact the fish collectors.

When aggregating the entire value chain, and adding the related administrated project costs, the result remains positive and acceptable with a highly positive NVP, an IRR of almost 38% and a BCR of 1.3. In the last CBA model for fishery, the related share of project management funds was added to the base option, and the result remained positive: highly positive NVP, IRR of almost 28%, and BCR of 1.22. The sensitivity analysis shows that the model is quite sensitive to fish price fluctuations, and to declining fish stock.

In the **WASH sector**, the CEA allows calculating a price per unit of drinking water with a given technology, in our case it was an open pond system. As soon as the information becomes available for other technologies, such as an open well or a deep well, these technologies can also be analysed and furnish similar information.

For the open pond water system, the cost for 1 m3 of drinking water is 1'170 MMK or 7'021 MMK per household for a period of 5 months. For the villagers, the alternative is to buy water from a neighbouring village. In that case they must pay between 1'000 and 1'500 MMK/m3, which is in the same price range as the water produced locally. From the perspective of the villagers, however, the water from the open pond is much cheaper because of the project subsidy allocated for the pond construction, and they have the control over the water, which may not be the case when depending from the neighbouring village.

In chapter 4 a set of recommendations is formulated and the economic analysis (impact of the project on Myanmar's economy) is discussed but not done because of the lack of reliable information.

1 Introduction

1.1 Background and objectives

Located in the southeast of Myanmar, the Gulf of Mottama (GoM) is one of the most important and unique intertidal mudflat ecosystems in the world. The coastline of the GoM spans 3'000 km; it links the Yangon and Bago Regions to Mon State and receives water and sediments from the Salween, Sittaung, and Yangon Rivers.

The extensive mudflat is home to at least 150'000 water birds, including the Critically Endangered Spoon-billed Sandpiper (SBS), as well as fishes, crustaceans, and other flora and fauna of ecological, conservation, and commercial importance. The floodplains, estuaries, and respective rivers represent spawning and nursery grounds for a wide range of commercially important fish species, like Hilsa, seabass, and croaker, among others. Overall, the ecosystem services of the GoM support the food security and livelihoods of many of the 1'500'000 people living in the eight targeted townships. As such, their current and potential role in poverty alleviation is substantial, especially for the most vulnerable people of the GoM, including landless households.

However, lack of management and uncoordinated governance of these coastal natural resources have led to overexploitation, resulting in massive decline of fisheries stocks, decrease in SBS populations, habitat destruction, and inland salinity intrusion. These multiple impacts and threats increase the vulnerability of coastal rural communities, especially fishers, who seek other livelihoods options and income generating opportunities. In addition, these communities generally lack access to essential services, such as basic infrastructure and domestic water supply. If no action is taken to sustainably manage natural resources and to build resilience of local communities, it is likely that the coastal economy will decline further, livelihood security will be at risk, the potential for conflicts over natural resources will intensify, and environmental degradation and biodiversity loss will further reduce the services provided by the Gulf's ecosystems.

Recognizing the urgency of the situation, the Government of Myanmar has taken steps to address these issues. With support from the Swiss Agency for Development and Cooperation (SDC), the Gulf of Mottama Project (GoMP) was initiated in 2015, with a first phase running until April 2018, a second phase planned until December 2021, and a third phase expected until December 2024. This long-term initiative is implemented by a consortium comprising HELVETAS Swiss Intercooperation (HELVETAS), the International Union for Conservation of Nature (IUCN), the Network Activities Group (NAG) and as associate partner the Biodiversity and Nature Conservation Association (BANCA).

A major outcome of the Phase 1 project was the development of the Gulf of Mottama Coastal Natural Resources Management Plan (CNRMP), which was developed through a series of community and state/region consultations. The Gulf of Mottama CNRMP provides a framework for the sustained management of the natural resources of the GoM, beyond the activities and timeline of this project. Based on scientific evidence, the implementation of the CNRMP will trigger and support change towards a more sustainable and equitable use and management of the Gulf of Mottama's coastal resources.

In this context, the project will pursue its interventions and focus Phase 2 on the implementation of the CNRMP, ensuring integrated management and coordinated governance of coastal resources,

considering the needs, aspirations and interests of local communities and ultimately resulting in improving livelihoods and conserving biodiversity and ecosystem services.

The GoMP goal is defined as: "The unique biodiversity of the GoM is conserved and sustainably developed in order to benefit human communities that depend on it." The project is about transforming a system of exploitation of natural resources to make it more sustainable and beneficial in the long term for local communities. Accordingly, the project reflects the global conservation value of the GoM and the opportunity to implement the GoM Coastal Natural Resources Management Plan.

The three outcomes of the project are:

- 1. Livelihoods are secured and diversified to build communities' resilience
- 2. Coastal Natural Resources use is sustainable and well-managed, and biodiversity is conserved
- 3. Coastal Natural Resources Governance is coordinated and effective, and awareness on the GoM values is raised.

1.2 Theory of change

The Specific Objective of the project (or Project Impact) is to ensure the development of an enabling environment for the implementation of the GoM Coastal Natural Resources Management Plan (CNRMP) and support its implementation to result in an improved livelihood security for vulnerable women and men in targeted coastal areas of the GoM. To achieve this objective, the project will support a series of interrelated changes organised around the three major outcomes, building on the management strategies from the GoM CNRMP that refer to livelihoods security, integrated Coastal Natural Resources (CNR) management and coordinated CNR governance. Phase 2 will ensure the CNRMP is understood, locally owned and sustainably implemented.

The project intervention seeks to trigger a process of change and transformation, building people's resilience, decreasing their vulnerability, and improving their livelihoods. This change will directly contribute to the sustainable use of coastal natural resources and to the implementation of the CNRMC. A general flowchart shows the theory of change for the GoMP (Annex 1). For the components addressed by the CBA, the theory of change looks as follows:

Figure 1 Illustration of the links between issues, interventions, outputs and outcomes for the topics addressed by the cost benefit analysis (simplified, non-exhaustive)

1.3 Why a cost-benefit analysis?

With a meaningful cost benefit analysis, the GoMP will have a useful tool for its communication with its donor and partners, and it will have a powerful additional tool for its monitoring during phase 2. The CBA provides quantitative information (and projections) that show the performance of a project in relation to the funds invested. The CBA is not only considering the project funds, but also takes into account the additional costs for the beneficiaries and other stakeholders, i.e. all the funds needed to implement the activities.

By promoting the wise use of natural resources in the Gulf of Mottama, and supporting the development of management plans and governance structures, the project contributes to the sustainability of these services in the long term. This is a precondition for sustainable livelihoods in the GoM. To establish detailed cost/benefit calculations for environmental services is known to be difficult, resource-intensive, and still relies on numerous assumptions. Therefore, the project has decided to focus on specific CBAs during Phase 2.

Consequently, the current analysis is an ex-ante analysis that took place at the onset of phase 2 (2018) and at the end of phase 2 (second half of 2021) an ex-post analysis will take place. Both analyses will give a deeper insight in the costs and benefits of these specific activities. At the end of the report, some additional thoughts are proposed regarding an economic analysis, i.e. looking at the impact of the project on the economy of the concerned regions.

Specific tasks and deliverables of the mandate are listed in annex 1 (ToR).

2 Methodology

The methodology for the application of CBA / CEA to the Gulf of Mottama project was discussed with the project team during the briefing meeting in Yangon on May 16.

It was agreed that the study would focus on three value chains (paddy, green gram and fishery) as well as on the WASH sector as was specifically agreed with SDC.

2.1 Paddy and Green Gram

For both crops, project interventions are focusing on production, with the introduction of improved varieties and the promotion of better practices, which correspond to an intensification of cropping leading to higher yields and better quality (see also figure 1).

In this case we considered the "average paddy farmer" and the "average green gram farmer", and compared "project farmers" with "non-project farmers". The average farmers are characterized with key parameters such as crop area, yield, producer price, etc. From the comparison, we can derive "additional costs" and "additional benefits" corresponding to the change induced by the project interventions at farmers' level. The result is a CBA at the level of a single producer (CBA1). This CBA is then aggregated for all the producers in the project, based on the number of farmers involved in project activities (training, access to inputs, etc.) according to the project objectives over time (CBA2). In a last step, a share of project management costs is added to CBA2, which gives the picture of the project with all costs included (CBA3).

Table 1 CBA for Paddy and Green Gram

СВА	Costs	Benefits	Comment
CBA1 at farmers' level,	Direct additional	Additional	This first CBA shows the profitability of the
for "average farmer"	costs for the farmers	value of	activity at farmers' level; this should
	only	production	correspond to the situation after the
			project if the activity is sustainable
CBA2 aggregated for	direct additional	Additional	The second CBA shows whether the
all the farmers	costs for farmers	value of	activity is still profitable with project
	+ project costs	production	support costs. This is calculated for the
	attributable to crops		entire project area and all the farmers
			involved
CBA3 aggregated for	direct additional	Additional	The third CBA shows whether the activity
all farmers, including	costs for farmers	value of	is strong enough to absorb the project
management costs	+ project	production	management costs attributable to the
	administrated funds		activity
	attributable to crops		
	+ project		
	management costs		
	(share for crops)		

As the project interventions towards other value chain stakeholders are not significant, there is no value added besides the increased production and possibly quality that is generated by the producers.

2.2 Fishery

The project intervention in the fishery value chain also focuses mainly on the primary production (fishermen). The aim is to at least maintain, if possible reverse the decreasing trend in fishing output and to improve the quality, thus contributing to increased income and to value addition in the fishery value chain.

As we did it in the CBA for crops, we also consider an individual fisherman with or without the project for the first level of CBA. To make it more understandable for non-specialist readers, we first looked at the fishery activity (including all the costs involved in the activity) without (CBA1) and with the project (CBA2), and then we compared the figures (delta CBA fisherman, the difference corresponding to the change induced by the project). The same was done for a village fish collector (CBA3 without the project and CBA4 with the project). Here again the difference between the two is the "delta CBA collector" showing the change induced by the project for the collector.

The "delta CBA fisherman" results were then multiplied by the number of fishermen and the "delta CBA collector" was multiplied by the number of collectors (according to project objectives over time, and the project costs (administrated funds) were added to the local costs in CBA5.

Finally, in CBA6, we have added a share of the project management costs to CBA5, proportional to the share of administrated funds.

Table 2 CBA for Fishery

СВА	Costs	Benefits	Comment
CBA1 at fisherman's	Direct costs for the	Value of fish caught	CBA1 shows the profitability of the
level, for "average	fisherman only, including		activity at fisherman's level as it is
fisherman"	investment (boat, net,		without the project (this
without project	etc.) and operational		corresponds somehow to a
	costs		baseline).
CBA2 at fisherman's	Direct costs for the	Value of fish caught	CBA2 shows the profitability of the
level, for "average	fisherman only, including		activity at fisherman's level with
fisherman"	investment (boat, net,		the project (improved situation).
with project	etc.) and operational		
	costs		
Delta CBA	Additional costs for the	Additional benefits,	This CBA is the difference between
fisherman, at	fisherman difference	additional value of	CBA2 and CBA1 (net difference
fisherman's level,	between with and	the fish caught with	between with project and without
for "average	without the project	the project	project)
fisherman", with-			
without comparison			
CBA3 at collector's	Direct costs for the	Value of fish sold	CBA3 shows the profitability of the
level, for "average	collector only, including		activity at collector's level,
collector"	buying the fish from		without the project (this
without project	fishermen		corresponds somehow to a
			baseline).
CBA4 at collector's	Direct costs for the	Value of fish sold	CBA4 shows the profitability of the
level, for "average	collector only, including		activity at collector's level, with
collector"	buying the fish from		the project (improved situation).
with project	fishermen		
Delta CBA collector,	Additional costs for the	Additional benefits,	This CBA is the difference between
at collector's level,	collector difference	additional value of	CBA4 and CBA3 (net difference
for "average	between with and	the fish sold with	between with project and without
collector", with-	without the project	the project	project)
without comparison			
CBA5 aggregated for	additional costs for all	Additional benefits	CBA5 shows the profitability of the
all fishermen and	fishermen	(all fishermen and all	project including administrated
collectors	+ additional costs for all	collectors)	funds allocated to fishery
	collectors		
	+ administrated project		
CDAC agains gate of fair	funds allocated to fishery		
CBA6 aggregated for	fish arms on		CBA6 shows the profitability of the
an instremmen and	+ additional costs for all	(an instrumentationall	project including administrated
			share of managements costs
	Longeninistrated project		share of managements costs
	+ automistrated project		attributable to insilery
	+ share of project		
	+ sildre of project		
	management costs		

Note: the future of fishery in the Gulf of Mottama will largely depend on the successful eradication of illegal fishing. It is part of the project outcomes to contribute to this objective. In the CBA models, this effect was simulated by decreasing fish catch over the years without the project, while the fish stock remains unchanged in the scenario with the project.

2.3 CEA for WASH

Initially it was planned to do a CBA for the WASH sector as well. However, considering the limited availability of data, the CBA model would have been based almost exclusively on assumptions, even more than for farmers and fishermen, especially in terms of benefits. Therefore, we decided, in agreement with the project team, to analyse the cost effectiveness of this component rather than the cost benefit.

The CEA for the WASH starts at the level of one water supply system (e.g. open pond) and the people (households) that are benefitting from the system. This will be aggregated for all the villages that are using the same system (within the project).

For the CEA the costs that are considered include the following:

- Investment costs (construction of the system)
- Management cost and operations (including maintenance, supervision, etc.)
- Financial costs

The calculation is done over 10 years (as we have done for the CBAs) and the net expenses per year are discounted. The costs may vary from one system to another (also from one village to another) and also over time, the costs may not be constant. These variations will allow comparing the systems under different conditions. The benefits are listed and the relevant indicators for the CEA are identified.

These indicators are categorized in production and consumption assuming that the quantities may differ (in case of overproduction vs needs and also considering the losses due to evaporation). In the model we may also simulate special years (e.g. dry year, not enough water to fill the systems or heavy rain damaging the system, more maintenance required). The calculated indicators are compared to a reference price (costs for the village if they have to buy water). The same calculation can be repeated for each system.

	Production	Consumption	Reference
Drinking water	Costs per litre produced	Costs per litre consumed	Cost per litre bought
	Costs per household/yr	Costs per household/yr	Costs per household/yr
Household	Costs per litre produced	Costs per litre consumed	Cost per litre bought
water	Costs per household/yr	Costs per household/yr	Costs per household/yr

Table 3 Indicators for the Cost Effectiveness Analysis in the WASH sector

3 Results

3.1 Paddy

The main crops in the project target areas (townships of Thaton, Bilin and Kyaito in Mon State and townships of Kawa and Thanatpin in Bago Region) are paddy and green gram. Paddy is the main crop for food security, but also for the households' income whereas green gram is grown primarily for sale. The main paddy season is the rainy season (monsoon), some farmers grow a second crop of paddy during the dry season. The area suitable for irrigated paddy is much smaller than the rainfed paddy area. The monsoon paddy is prone to risks – mainly floods, sometimes also draught. Snails and rats were also mentioned as a major threat for the paddy. Depending on the location, the farmers tend to invest more or less in the crop: in high risk areas, minimal investment, therefore intensification (transplanting, improved practices) is only done in low risk locations. Labour shortage is another constraint to crop production.

The project promotes new varieties, better use of fertilisers (organic and mineral) and best cropping practices. The farmers who participate in the project apply the package proposed by the project only on a limited share of their paddy area. The new knowledge is disseminated through farmers' field schools and extension activities. Other value chain stakeholders are also meant to be involved, but so far only limited activities have been done at their level.

Figure 2 Cropping pattern in the project area (source: http://ali-sea.org/wp-content/uploads/Crop-Management-in-Nyaung-Oo.pdf)

The cropping pattern is illustrated in figure 2. This pattern is only applicable on land that can be irrigated. The lack of water is the main reason for not using paddy land after the main crop.

Most farmers get more income from pulses and vegetables grown in the paddy fields. However, agriculture contributes only about 50 - 60 % of the farmers' income. Livestock and off-farm activities are other important sources of revenue. Remittances were mentioned to play a limited role, but this should be further checked.

3.1.1 Paddy value chain

The value chain is illustrated in the project document of the GoMP. Figure 3 shows on the value chain chart, where the project interventions are located. In terms of impact on the value chain, if the production is improved, and the market linkages are functioning, then the entire value chain will generate more value.

Figure 3 Paddy value chain in Mon State. Focus of the project interventions are indicated (red and dotted red circles)

3.1.2 Project key figures

The project plans to reach a certain number of farmers who should improve their practices in paddy production, thus achieving higher yield and income. As this activity has already started in phase 1, we integrated the (real) figures of phase 1 (table 4). Beyond phase 2, the number of farmers is kept constant, assuming that those who have adopted the new practices will continue to use them. We also assumed an average area per farmer of 2ac under improved management (from phase 2 onwards).

	units	> 2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
villages	number	27	27	57	57	57	57	57	57	57	57	57
farmers	number	534	534	1500	2000	2500	3000	3000	3000	3000	3000	3000
area	ac	748	748	3000	4000	5000	6000	6000	6000	6000	6000	6000

Table 4 Project key figures for paddy

3.1.3 Key parameters – paddy farmers

Table 5 shows the key parameters (what is changing with or without the project) that are used in the calculations. There are two main techniques for paddy production: either direct seeding or transplanting. For the farmers who are seeding directly, the production costs with project will increase by 80'000 MMK compared to the non-project farmers. The difference is due to the cost of improved seeds and improved fertilising. Transplanting is known to be more productive, however it implies a significant increase in workload (nursery, transplanting). Here also there is an increase of production costs of 80'000 MMK between with and without project. To get a more precise picture of the difference in production costs, more detailed data collection and observation will be needed.

Table 5 Key parameters paddy producers

Costs for average paddy farmer				
	unit	without project	with project	additional costs considered
paddy production costs				
- direct seeding	MMK/ac	70000	150000	80000
- transplanting	MMK/ac	120000	200000	80000
- area per farmer	ac	4.5	1.5**	2***
- interest rate on credit	%	12%	12%	
- working capital	MMK	100000	200000	
yield of paddy				
- direct seeding	kg/ac	700	1200	500
- transplanting	kg/ac	1150	1800	650
- average yield increase	kg/ac			575
price of paddy				
- farm gate price for paddy	MMK/kg	250	250	
- rice increase for better quality		0		
"with project" includes improved varieties, of	combination of o	rganic and mineral fe	ertilizer, better crop m	anagement in gereral. Only

"with project" includes improved varieties, combination of organic and mineral fertilizer, better crop management in gereral. Only monsoon paddy is considered because it covers a far larger area

** 1.5ac improved with project (out of 4.5ac)

*** from the second year, 2ac improved (out of 4.5ac)

At the level of the miller (we visited one rice miller during the field trip in Bilin Township (Mon State) we did not get additional information on value added by the project, except the increased quantity of paddy produced. The CBA model is therefore focused on the primary production only.

3.1.4 CBA results

As explained in chapter 2, the first level of analysis is an individual "average" paddy farmer. Only monsoon paddy was considered, as summer paddy is very marginal and would not play a significant role in our model.

Table 6	CBA for an individual paddy farmer in the project area. In this table the difference between the situations without
and with	he project are computed

CBA 1 farmers											
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	100 000	132 000	172 000	172 000	172 000	172 000	172 000	172 000	172 000	172 000	172 000
additional working capital	100 000										
additional production costs		120 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000
financial costs		12 000	12 000	12 000	12 000	12 000	12 000	12 000	12 000	12 000	12 000
Total benefits		215 625	287 500	287 500	287 500	287 500	287 500	287 500	287 500	287 500	387 500
additional paddy sales		215 625	287 500	287 500	287 500	287 500	287 500	287 500	287 500	287 500	287 500
additional value of paddy		-	-	-	-	-	-	-	-	-	-
recovery working capital								-			100 000
Cash flow	-100 000	83 625	115 500	115 500	115 500	115 500	115 500	115 500	115 500	115 500	215 500
NPV	619 275										
IRR	99.58%										
BCR	1.55										

The result looks very positive (NPV > 600'000, IRR nearly 100% and BCR over 1.5), but we have to consider that in this calculation, only the additional costs at farmers' level are considered, no project costs included. *Note: The common terms used in the Cost Benefit Analysis are explained in annex 2*.

In CBA2 (annex 3), this average farmer is multiplied by the number of farmers expected to change their practices (see table 4). The result is very similar as for the individual farmer, but we have to consider that project costs are not included in CBA2 either:

NPV	1 283 870 215
IRR	98.24%
BCR	1.46

Why are CBA1 and CBA2 not exactly the same? We could expect that by multiplying a single farmers' result by a larger number of farmers would result in the same result (IRR and BCR). However, the result is slightly different! This is due to the fact that there is a delay in time, the "new" farmers appear in the CBA model in years 3, 4, 5, etc., i.e. their initial investment appears later in the model, which changes the result of the CBA.

What do these results tell? The results show that for the farmers, under the given set of assumptions, it is worthwhile adopting the practices promoted by the project.

In CBA3 (annex 4), we test the robustness of the model by adding the project costs (administrated funds only) that can be attributed to "improvement of the paddy value chain in the Gulf of Mottama".

Here the result remains positive (for the given set of assumptions), but of course it is clearly lower than CBA2, because the benefits are not increasing, only are costs are higher:

NPV	367 345 414
IRR	20.21%
BCR	1.10

When adding the project administrated funds, the CBA remains positive. From the perspective of the donor, this means that investing money in this component of the project is still ok, but should be observed carefully, because the profitability looks fragile. The sensitivity analysis will show how robust this result is, and what could be done to improve the result.

Sensitivity analysis

The following hypotheses are tested to assess the CBA model: smaller number of farmers involved from year 2019 onwards, more farmers involved from 2021 onwards, lower yield increase, higher yield increase, decreased area of improved paddy per farmer, increased area per farmer.

The results of these analyses are as follows:

	NPV	IRR	BCR
Basic scenario (for comparison)	367 345 414	20.21%	1.10
Number of farmers			
only 2000 farmers from 2019 to 2026	-22 309 072	9.19%	0.99
3500 farmers from years 2021 to 2026	542 109 136	23.63%	1.14
Yield increase			
+525kg/ac (instead of 575kg/ac)	23 894 700	10.68%	1.01
+625kg/ac (instead of 575kg/ac)	710 796 128	29.39%	1.19
Increased area per farmer			
improved paddy per farmer (1.5ac instead of 2ac)	-58 948 848	8.29%	0.98
improved paddy per farmer (2.5ac instead of 2ac)	793 639 676	31.23%	1.19

The result shows that the project could not really afford a reduced number of farmers, e.g. below 2000. The scenario with 2000 farmers from year 2020 until 2026 (instead of 2500 in 2020 and 3000 beyond) has a negative NPV! Almost the same applies if the yield is lower by 50kg/ac than expected (NPV is slightly positive and IRR just above 10%). Finally, if the farmers reduce their paddy area under improved practices by 25% (1.5 ac instead of 2ac/farmer), then the NPV is strongly negative and the IRR is below 9%.

Note that these results were obtained without adding project management costs. Obviously, these could not be absorbed with the given set of assumptions.

3.2 Green Gram

3.2.1 Value chain

Green gram is grown in the paddy field after harvesting the paddy, as the winter crop. Green gram is essentially a cash crop and it contributes significantly to the household income. Another important difference between the two crops is that the green gram value chain is not controlled by the State, whereas there is a minimum producer price for paddy.

Black gram and green gram are consumed domestically and exported.

Figure 4 Green Gram Value Chain Mapping in Mon State and Bago Region¹ with project intervention (focusing in the red circle)

3.2.2 Farmers

Out of 1700 farmers (in 27 villages in phase 1 and 57 villages in phase 2) involved in paddy production, 50% of them are also involved in green gram production (mostly in Bago region); it is a seasonal activity using rice fields (also serving as soil preparation for rice). It is mainly exported to neighbouring countries (China, India, EU and Japan).

The area covered is the same as the paddy (i.e. 4.5 ac/farmers) and the yield is of 0.5t/ha without the project. With the project, farmers are increasing their production by 25% thanks to new techniques

¹ Source: Non-fishery Value Chain report

and introduction of new varieties. The quality of the green gram is also improved thanks to improved crop management, crop protection and post-harvest processing (sorting).

Unlike for paddy, the price of green gram is not regulated by the government.

From the meetings with the farmers, the producers' price for green gram at farm gate was mentioned to be 40,000MMK per basket (33kg) – approx. 1200 MMK per kilo (or 0.8 USD/kg). The selling price (wholesale market) was comprised between 900 and 1100 USD per T (0.9 - 1.1 USD/kg).

3.2.3 Collector of green gram

The mission met one green gram collector in Kawa Township. The green gram trade seems to be a profitable business especially in view of the strong international demand. This collector is also supplying inputs to farmers. He is working with some village collectors for green gram. The volume of sales of this collector reaches 7'000 to 9'000 tonnes per year. Collectors are important value chain stakeholders, but the project does not intervene directly at their level. Therefore, the value added for the value chain comes from improvements at the level of primary production.

3.2.4 CBA for green gram

From this initial data, a CBA for an average green gram producer was elaborated (CBA1).

The key parameters for a green gram farmer are based on many assumptions and data collected during the farmers' meetings as it appears in table 8.

Key parameters for green gram farmers							
	unit	without project	with project	additional costs with project			
production costs							
- working capital	MMK	100 000	200 000	100 000			
- direct seeding	MMK/ac	80 000	120 000	40 000			
- labour	MMK/ac	60 000	100 000	40 000			
- area per farmer	ac	4.5	0.5**	1.5***			
- interest rate on credit	%	12%	12%				
			total additional				
			costs	80 000			
yield of green gram							
- direct seeding	kg/ac	450	600				
 average yield increase 	kg/ac		150				
price of green gram							
- farm gate price for green gram	MMK/kg	1 200	1 320				
- price increase for better quality % 10%							
"with project" includes improved varieties, combination of organic and mineral fertilizer, better crop management in general. Note: In the Excel model, all the parameters with a yellow background can be modified.							

Table 8Key parameters for green gram producers

** with project, 0.5ac (out of 4.5ac) will be improved in the first year *** from the second year onwards, 1.5ac (out of 4.5ac) will be improved

We assumed an increase of production costs of about 80'000 MMK/ac and a corresponding yield increase of 150kg/ac (+25%). We also assumed a price increase of 10% for better quality due to better crop management and sorting / cleaning after harvest.

Out of these key parameters, additional costs and benefits were calculated to conduct the CBA at the farmer's level (table 9).

Table 9 CBA1 for green gram producers

CBA 1 farmers - gree	n gram										
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	100 000	52 000	172 000	172 000	172 000	172 000	172 000	172 000	172 000	172 000	172 000
additional working capital	100 000										
additional production costs		40 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000
financial costs		12 000	12 000	12 000	12 000	12 000	12 000	12 000	12 000	12 000	12 000
Total benefits		99 030	396 120	396 120	396 120	396 120	396 120	396 120	396 120	396 120	496 120
additional green gram sales		99 000	396 000	396 000	396 000	396 000	396 000	396 000	396 000	396 000	396 000
additional value of green gram		30	120	120	120	120	120	120	120	120	120
recovery working capital								-			100 000
Cash flow	-100 000	47 030	224 120	224 120	224 120	224 120	224 120	224 120	224 120	224 120	324 120
NPV	1 154 684										
IRR	125.52%										
BCR	2.10										

With a positive NPV (calculated with a discount rate of 10%), an IRR of 126%, and a benefit cost ratio above 2, this is an excellent result, demonstrating that it is worthwhile for farmers to get involved in green gram production.

As we calculated for the paddy value chain, the next step (CBA2) is the aggregation of the farmers considering the number of farmers to be involved by the project during the coming phase. This data is presented in table 10.

Table 10 Key figures for green gram

	units	> 2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
villages	number	27	27	45	45	45	45	45	45	45	45	45
farmers	number	267	267	750	1000	1250	1500	1500	1500	1500	1500	1500
area	ac	748	748	3000	4000	5000	6000	6000	6000	6000	6000	6000
additional green gram production	tonnes	112.2	112.2	450	600	750	900	900	900	900	900	900
additional farmers (yearly increase)			267	483	250	250	250	0	0	0	0	0

The results of CBA2 (annex 5) are similar to CBA1, the differences between CBA1 and CBA2 are explained above in the paddy section.

NPV	1 194 823 804
IRR	140.73%
BCR	1.78

For green gram, the project inputs are comparatively modest, therefore, even after adding the administrated costs, the CBA results remain very good (CBA3).

NPV	1 007 545 245
IRR	79.61%
BCR	1.58

Testing the robustness of the model is the last step, with the sensitivity analysis. In the case of green gram, we decided to test the following parameters: reduced number of farmers (with only 1000 farmers from 2019 until 2026, then only 750 farmers and finally only 500 farmers). Lower yield increase (only +50kg/ac and then +100kg/ac instead of +150kg/ac). Finally, no price increase instead of the expected 10% increase.

Table 11 Sensitivity analysis for the green gram value chain

	NPV	IRR	BCR
basic scenario (for comparison)	1 007 545 245	79.61%	1.58
number of farmers involved			
only 1000 farmers 2019 - 2026	632 614 724	71.37%	1.44
only 750 farmers 2018 - 2026	383 372 263	58.58%	1.31
only 500 farmers 2018 - 2026	87 410 794	25.71%	1.09
Yield increase			
only +100kg/ac instead of 150kg/ac	116 787 884	19.57%	1.07
only +50kg/ac	-773 969 477	#NUM!	0.55
Price increase			
0 instead of +10%	763 820 104	64.71%	1.44

The analysis shows that with decreasing yields, the profitability is drastically reduced, and at a level of about +50kg/ac, it becomes negative (NPV is negative, IRR cannot be calculated, BCR is below 1). The price of green gram is also an influential factor: without any price increase, the profitability is reduced (but still positive).

3.3 Fishery value chain

As explained in chapter 2.2, the first level of analysis compares a fisherman with and without the project. In this case we started by calculating the CBA for the fishery activity as a whole, and not only the difference (additional costs and additional benefits) between the situation with and without the project.

3.3.1 Key parameters for fishermen

Table 12 Key parameters for fishermen in the project area

Caution: only yellow boxes should be modified for the sensitivity analysis; all other cells are calculated and the spreadsheet is likely to be corrupted if you modify other cells						
Costs for average fisherman	unit price (MMK)	lifespan (yrs)	number without project	number with project		
fishing boat	700 000	6	0.6	1		
engine	260 000	7	1	1		
net	1 000 000	3	1	1		
box (fibre)	120 000	4	0	1		
box (polystyrene)	5 000	2	1	0		
	MMK/year					
ice	160 000		0.2	1		
fuel	225 000		1	1.25		
labour	800 000		0.8	1		
financial costs	200 000		1	1.2		

Assumptions regarding the costs

Table 12 compares the costs for a "new" fisherman who wants to start the fishing activity. For that he needs the equipment (boat, engine, net, box). If the fisherman does it the traditional way, we assumed he would buy a cheaper boat (therefore $0.6 \times 700'000$ MMK = 420'000MMK) whereas the fisherman under the project will buy a newer one (700'000MMK). Both need an engine, a net (most expensive item for them with 1'000'000MMK) and a box to keep the fish. The "non-project fisherman" will buy

a cheap box and only a bit of ice, while the "project fisherman" will buy a fibre box (promoted by the project) and he will buy enough ice to keep the fish fresh.

Assumptions regarding the benefits

For the benefits, the basic assumption is that both fishermen will catch 1 tonne of fish during the first year, and a share of 10% big fish and 90% small fish. Without the project, i.e. without actively reducing illegal fishing, we assumed a yearly decrease in fish catch of 5%, while with the project, this would not happen (we assumed 0% decrease). In addition, without the project, the share of large fish would remain 10% of total fish catch, while with the project, this share would increase due to improved practices, adapted nets, and as a positive consequence of the control of illegal fishing.

The fish price would also change with the project, because of improved conditions of fishing (fibre boxes and ice). We assumed a (producer) price of 4'500MMK/kg and 1'800MMK/kg respectively for large and small fish, and an increase of these prices with the project of respectively 10% and 15% (table 13).

Caution: only yellow boxes should be modified	for the sensitivity	analysis, all o	ther cells are calcula	ted and the									
spreadsheet is likely to be corrupted if you mod	lify other cells												
Costs for average fisherman													
	unit price	lifespan	number without	number with									
	(MMK)	(yrs)	project	project									
fishing boat	700 000	6	0.6	1									
engine	260 000	7	1	1									
net	1 000 000	3	1	1									
box (fiber)	120 000	4	0	1									
box (polystyrene)	5 000	2	1	0									
	MMK/year												
ice	160 000		0.2	1									
fuel	225 000		1	1.25									
labour	800 000		0.8	1									
financial costs	200 000		1	1.2									
			number without	number with									
Fishing results	units		project	project									
total fish catch	kg/year	1000	2017 - 26	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
big fish catch	%		10%	10%	11.2%	12.5%	14.0%	15.7%	17.6%	19.7%	22.1%	24.8%	27.7%
% increase	%		0%	12%									
small fish catch	%		90%	90%	88.8%	87.5%	86.0%	84.3%	82.4%	80.3%	77.9%	75.2%	72.3%
evolution fish catch without project	%/year	-5%		1000	950	903	857	815	774	735	698	663	630
evolution fish catch with project	%/year	0%		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
sales price big fish	MMK/kg	4 500	4 500	4 950									
sales prce small fish	MMK/kg	1 800	1 800	2 070									
price increase with project (high value fish)				10%									
price increase with project (low value fish)				15%									

3.3.2 CBA fisherman

Based on these key parameters and assumptions above, the CBA (annex 7) for the average fisherman with and without the project were calculated. The results are the following.

CBA1	Without the project	CBA2	With the project
NPV	43 319	NPV	2 152 394
IRR	10.99%	IRR	30.36%
BCR	1.00	BCR	1.16

The result shows that the fisherman without the project is at the limit of profitability, with an IRR just above the discount rate. With the project, the situation is clearly better, the NPV is highly positive and

the IRR is much higher (30.36%). The BCR is also clearly above 1. However, these results do not include any project cost at this stage.

To assess the impact of the project, we have to look at additional costs and additional benefits, i.e. the difference between CBA2 and CBA1. This gives the following picture:

Delta CBA for fisher	men (with – without project)
NPV	2 109 075
IRR	58.57%
BCR	1.74

In this table, the NPV delta is the difference between NPV CBA2 – NPV CBA1. This IRR is much higher because, with comparatively small additional costs, high benefits can be achieved. In other words, for the fishermen, it is clearly profitable to adopt the project practices.

3.3.3 Village fish collector

The village fish collectors play an important role for the fish value chain. They provide advance payments to the fishermen, buy their fish and sell them to their market partners. The project does not directly intervene at fish collectors' level, their benefits from the project are therefore indirect: increased benefits because of the higher share of big fish, because of the maintained volume of fish catch, and because of improved quality due to better boxes and ice. This is a business where the collectors are also involved: supply of ice to the fishermen.

3.3.4 Key parameters for fish collectors

Table 14 Key parameters for village fish collector, with and without project

Projected situation for average village fish	l collector	
(with project vs without project)	unit	0
working capital (without project)	MMK	10 000 000
working capital with project	MMK	15 000 000
share of high value fish	%	10%
increase with project	%/year	5%
share of low value fish	%	90%
fish volume (at the beginning)	t/year	12
evolution (without project)	%/year	-5%
evolution (with project)	%/year	0%
ice volume	t/year	20
buying price high value fish (without project)	MMK/kg	4 500
buying price high value fish (with project)	MMK/kg	4 950
selling price high value fish (without project)	MMK/kg	5 300
selling price high value fish (with project)	MMK/kg	5 936
price increase with project (buying)	%	10%
price increase with project (selling)	%	12%
buying price low value fish (without project)	MMK/kg	1 800
buying price low value fish (with project)	MMK/kg	2 070
selling price low value fish (without project)	MMK/kg	2 100
selling price low value fish (with project)	MMK/kg	2 520
price increase with project (buying)	%	15%
price increase with project (selling)	%	20%
buying price ice	MMK/100kg	6 000
selling price ice	MMK/100kg	7 500
storage & marketing	MMK/year	400 000
advance to fishermen	MMK/year	3 000 000
financial costs	MMK/year	0

The key parameters used as assumptions for the CBA (table 14) connected to the are kev parameters for fishermen. The fish buying price (collector) corresponds to the fish selling price (fishermen). the parameters Along for fishermen, the share of big fish and its evolution follow the same trend. The selling price of the fish was set 1'000 MMK/kg higher than the buying price (margin of the collector).

Here also we have calculated a "delta CBA fish collector" corresponding to CBA4 – CBA3.

3.3.5 CBA village fish collector

For the fish collector without project (**CBA3**, annex 8) the result is poor and it reflects the statements of the people we met about the negative trend in fishing. The mentioned influence of illegal fishing seems to play a crucial role. With such a poor CBA result, it would not be a surprise to see many fish collectors leaving the activity and look for a better livelihood option.

CBA4 (with the project, annex 8) looks much better! This is not a surprise as the collectors have more fish of better quality for sale. Improving the fishermen's and the collectors' situation seems to go hand in hand. This will have to be verified in the field!

CBA3	Without the project	CBA4	With the project
NPV	8 212 347	NPV	28 134 642
IRR	30.33%	IRR	40.12%
BCR	1.06	BCR	1.14

Finally, the **delta CBA for fish collectors** looks pretty good:

Delta CBA for fis	sh collectors (with – without project)
NPV	15 200 528
IRR	51.10%
BCR	1.24

Note that the number of fish collectors is not important in this calculation: the volume and the value of the fish is the determining factor.

3.3.6 CBA with administrated project funds

The next step consists in aggregating all the additional costs (fishermen, fish collectors **and project administrated funds for fishery**) and additional benefits for all the involved fishermen and fish collectors in the coming 10 years. The result of CBA5 (annex 9) is the following:

CBA5 adding proj	ect administrated funds
NPV	8 849 612 425
IRR	37.97%
BCR	1.30

The first observation concerns the NPV: the amount is rather large (6.5 million USD)! This is because with the project contribution, significant private investments (by the fishermen and collectors) have been encouraged, and the fishing activity (with improvements promoted by the project) is profitable. This is illustrated in figure 5. Then the IRR is rather high (37.97%),

Figure 5 Evolution of project costs during the project and beyond

explained by the high volume of fish and the high value added. Finally, the BCR is also excellent with a ratio of 1.3.

In figure 5, it appears that the fishermen have a peak of additional costs in 2022, this is because in the model, for the sake of simplification, we have planned a replacement of the fishing boats in that year.

3.3.7 CBA with administrated and management costs

Finally, the last step consists of integrating the corresponding share of project management costs. For the fishery, we included about 2.1 million USD over the entire project period. The result of CBA6 is the following:

CBA6 adding project management costs NPV 6 770 160 848

 IRR
 27.92%

 BCR
 1.22

The good news: the result remains positive, it looks even rather good! The sensitivity analysis will tell how solid the model for the fishery value chain is.

3.3.8 Sensitivity analysis fishery value chain

The sensitivity analysis should be done in several steps because the CBA model is rather complex. In a first step, we will start again at the level of the individual fisherman, with the following parameters tested: fish catch per year (kg/year); buying price of big fish and small fish

CBA1: what factors are likely to push fishermen out of business?

Scenario	Base	10% reduced	Buying price big	Buying price small	Lower negative trend in fish
		catch per year	fish -500/kg	fish -300/kg	stock (-3%/year instead of -5%)
	CBA1	CBA1	CBA1	CBA1	CBA1
NPV	43 319	-1 018 123	-213 068	-1 341 171	824 901
IRR	11%	#NUM!	5%	#NUM!	23%
BCR	1.00	0.90	0.98	0.87	1.08

This analysis is very clear! Catching 10% less fish would make the activity unprofitable. The model is also very much price sensitive, as a reduction of 500MMK/kg for big fish would make the NPV negative, and a reduction of 300MMK/kg for small fish would also have a very negative consequence. If the negative trend in fish stocks (estimated at 5% per year in the base CBA model) would be less drastic (here we have tested -3%/year) then the fishermen would be a bit better off, even without the project (or the project doing only policy dialogue to reduce illegal fishing).

CBA2: what reduces the attractiveness of project interventions for individual fishermen?

For this analysis, we have examined the same parameters as for CBA1. We have also checked the influence of "no price increase for project fish" (rewarding the better quality), and a scenario where the policy dialogue has no effect (trend of reduced fish stock same as without the project).

Scenario		10% reduced	Selling price	Selling price	Selling price for	Illegal fishing not
	Base	catch per	big fish -	small fish -	fish same as	under control, -5%
		year	500/kg	300/kg	without the project	fish stock/year
	CBA2	CBA2	CBA2	CBA2	CBA2	CBA2
NPV	2 152 394	596 157	1 609 437	373 101	315 666	-2 057 181
IRR	30%	16%	26%	14%	13%	#NUM!
BCR	1.16	1.04	1.12	1.03	1.02	0.85

The results are interesting! The "project fishermen" are in general more resilient to external shocks (fish catch, price). But if illegal fishing cannot be reduced with the project, then the fishermen will be in a situation that is worse than non-project fishermen, because they have invested more in the activity.

CBA3 and CBA4, what are the factors that determine the success of fish collectors?

A fish collector is a trader at village level. The activity depends logically on the volume, on the prices and on the margin. There parameters are checked at the level of an "average fish collector".

Scenario	В	ase	8 t instead ye	of 12 t per ar	Margin o (-5	n fish sales 50%)	Share of bi instead	ig fish 20% of 10%
	CBA3	CBA4	CBA3	CBA4	CBA3	CBA4	CBA3	CBA4
NPV	8 212 347	28 134 642	1 373 695	15 479 326	-5 464 957	-1 536 366	11 143 198	32 919 929
IRR	30%	40%	14%	27%	-8%	8%	37%	45%
BCR	1.06	1.14	1.01	1.11	0.94	0.99	1.07	1.14

The result shows that fish collectors with the project are a bit better off than those without the project, but there is no big difference. Nevertheless, the NPV is always much higher for the "project collector" compared to the "non-project collector". An increase of the share of big fish has a positive effect on the collectors.

CBA5, CBA6 including administrated costs, and project management costs

Having aggregated all the fishermen and collectors, the model englobes the entire value chain (at least the elements of it that we could capture). The sensitivity analysis is looking at similar parameters as above, but in addition the project dimension becomes an important issue. The following factors were tested in the sensitivity analysis at this level: fish stock reduction; number of fishermen, volume of fish marketed (fish catch per fisherman), share of big fish, sales' price of fish.

Scenarios	CBA5 incl. adm c	ninistrated osts	project	CBA6, incl. a managen	dministra nent cost	nted + s
	NPV	IRR	BCR	NPV	IRR	BCR
Base	8 849 612 425	38%	1.30	6 770 160 848	28%	1.22
Fish stock reduction only 2%/year*	1 293 666 007	16%	1.06	-785 785 570	7%	0.97
Number of fishermen (-50%)	3 054 854 512	24%	1.19	975 402 935	14%	1.05
No fish price increase with project	962 574 427	13%	1.04	-1 116 877 150	7%	0.96

* fish stock reduction is estimated to be 5% per year without the project (ref. 3.3.4), and 0% with the project. This scenario tests partly successful policy dialogue leading to a reduction of -3% per year with the project as compared to -5% without the project

The sensitivity analysis shows the importance of the policy dialogue. Successful policy dialogue is expected to stop the declining trend in fish catch, and an increasing share of big fish. If this is only partly successful, then the results of CBA5 become much lower (but still acceptable) while the CBA6 results show a negative NPV. Reducing the number of fishermen by 50% - which also means a reduction of the fish volume in the value chain – has a clear impact on the CBA5 and CBA6 results, but not enough to "kill the model". Finally, if the average fish price does not increase with the project (this is expected to be the case because of improved quality of the fish and less waste due to improved ice boxes), then the CBA5 and CBA6 results are low, respectively negative.

3.4 Water, sanitation and hygiene (WASH)

In the WASH sector, some activities have been initiated during phase 1, but the sector will be really integrated in the project from phase 2. Therefore, there was only very limited data available, and also the intentions of the project about what exactly will be the activities are not very clear.

From the field visit (to the village of Koe Tae Sue in Mon State), we got the following information: the main livelihood activities in this village are mud crabs collection, fishery and livestock. The village is a resettlement area, where people from another village that was destroyed by the sea have been resettled. This created some conflicts with the residents of this village, especially due to a shortage of drinking water. The local practice for water supply consists of collecting water from the roof and storing it in a tank near the house. This water is sufficient for the household needs for 8 months. The remaining 4 months, they have to buy water from a neighbouring village. They have two ponds in the village, but with the arrival of the resettlers, this has become insufficient. The project response to this situation was the construction of 2 new open pond water systems.

3.4.1 Open pond water system in Mon State

The open pond water system is filled with rain water only, there is no other water inflow. The pond size is 1'100 m2 with a depth of 1,8 m, i.e. a capacity of about 2'000 m3.

The costs of construction of the pond were 4 million MMK, of which the project paid 80%, the local community the remaining 20%. Maintenance costs were estimated to be 1 million MMK/year and management costs 0.5 million/year. The system is meant to supply enough water for 200 households during the 5 driest months.

Figure 6 Open pond system from the literature (source: <u>http://www.fao.org/fishery/static/FAO_Training/FAO_Trainin</u> <u>g/General/x6705e/x6705e02.htm</u>)

3.4.2 Open well for household water

Another system existing in the project area is the open well. This system provides only household water, no drinking water. Technically, this system consists of superposed rings that form the well. In Myanmar, each ring costs 50'000 MMK, i.e. for a well that requires 10 rings, the material costs will be 0.5 million MMK. Adding labour costs and other construction work will lead to an investment of about 1 million MMK. Unfortunately, we do not have any information about the functioning of the well: inflow sources, capacity, water supply volume.

3.4.3 Deep well for drinking water

The deep well is the most expensive of the three systems that were mentioned within the framework of the GoMP. There is an example of a deep well that required an investment of 7 million MMK, of which 3 million MMK were for the construction of the well itself, the remaining 4 million MMK were for a small water tower, and distribution network. Here also we have no information about the output and capacity of the well.

3.4.4 Water needs

In the project area, the people make a clear distinction between drinking water and household water. The open pond system is meant to supply drinking water; however, this is not always possible. The quantity of water needed in the project area per household was estimated as follows:

- → 40 litres drinking water per hh per day
- → 250 litres household water per hh per day

The quantity of household water may seem high, however the people said that due to the high salt content of the water, more water is needed, e.g. rinsing water for washing clothes.

3.4.5 Cost calculation for drinking water from the open pond system

For the open pond in Koe Tae Sue, the following calculation can be made:

 Table 15 Unit costs for the open pond water system in Koe Tae Sue, Mon State

CEA1 for water supply system											
	0	2018	2019	2020	2021	2022	2023	2024	2025	2026	
Total costs	4 000 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	
Project contribution to construction	3 600 000										
Village contribution to construction	400 000										
Maintenance		1 000 000	1 000 000	1 000 000	1 000 000	1 000 000	1 000 000	1 000 000	1 000 000	1 000 000	
Management		500 000	500 000	500 000	500 000	500 000	500 000	500 000	500 000	500 000	
Outputs (total available water in m3)		1 378	1 378	1 378	1 378	1 378	1 378	1 378	1 378	1 378	12 402
Drinking water supplied (m3)		1 200	1 200	1 200	1 200	1 200	1 200	1 200	1 200	1 200	10 800
Residual water supplied (m3)		178	178	178	178	178	178	178	178	178	1 602
Net present value	12 638 536										
KEY CEA INDICATORS											
Cost per m3 drinking water supplied (MMK/m3)	1 170										
Cost per household (5 months) (MMK/hh)	7 021										
Water stand in open pond over time	l										
Total outputs		December	January	February	March	April	May				
Water storage in pond (end rainy season)	m3	2 000									
Water loss by seepage	m3		10	10	10	10	10				
Water loss by evaporation	m3		71	93	130	149	129				
Water available for distribution	m3	2 000	1 919	1 576	1 196	797	418				
Number of households	hh		200	200	200	200	200				
Drinking water per hh	l/hh/day		40	40	40	40	40				
Drinking water consumption per month	m3		240	240	240	240	240	1 200			
Theoretically available after drinking water extraction	m3		1 679	1 336	956	557	178	178			

Cost of water when buying from a neighbour village

The price of drinking water indicated when buying it from a neighbour village was the following:

- → 200-300 MMK/container of 20litres, i.e. 10- 15 MMK/l including transport
- → For a family consuming 2 containers per day, i.e. 400- 600 MMK/day or 1'200 to 1'800 MMK/month. Over a period of 5 months, this is an amount of 6'000 to 8'400 MMK/hh.

3.4.6 Clustering WASH interventions by type

In the second phase of the GoMP, the project will probably support the construction of a few types of water systems. These systems can be clustered by type and compared. This comparison will tell under which conditions each type is the most appropriate and generate the best performance. This comparison will be based on the unit cost calculations done with the CEA.

In a later stage, all the water systems can be aggregated to obtain an overall picture of the investments in the WASH sector and of the performance in terms of people reached, and unit costs as explained above.

4 Discussion & recommendations

In the discussion we address some issues that were not taken up so far, and we propose some deeper interpretation of the CBA / CEA results.

The CBAs and CEA that are presented in the present report cover about 69% of the administrated funds of the GoMP during phase 2, which is substantial. Some activities were excluded from the CBA / CEA because they have only a very indirect link to the activities analysed here, and they are not suitable for a quantitative analysis.

4.1 Crops value chains

4.1.1 Paddy

Paddy is the most important crop in Myanmar in terms of number of producers, cropped area and production. However, the crop is regulated by the State (minimum producer price), which may reduce its attractiveness for intermediary stakeholders. The main threats on paddy are the changing climatic patterns, and the salinization of the coastal land.

The CBA for paddy shows that the project support is relevant, and that farmers who adopt those improved practices have a clear advantage. But for the farmers, intensifying their paddy crop only makes sense where the agro-climatic risks are bearable. And in many places, this is not the case.

Recommendations for paddy

- ➔ In its expansion plans, the project must consider the risk factor. Farmers should not be encouraged to invest additional resources if the risks are too high
- → We recommend proposing packages that are site specific, as there is no "1 size fit all" in paddy. Some farmers need salt tolerant varieties, others need shorter duration varieties, and depending on the water regime and season, best practices may differ.
- → Supporting the paddy value chain beyond primary production may be difficult as it is a regulated market, and it is exposed to the international market.
- ➔ The factors that need to be monitored carefully in paddy are the actual yield increase and value added with the project
- → The number of farmers involved must be increased to keep the CBA results on the safe side.

4.1.2 Green gram

Green gram is an important crop in the crop rotation, and beyond its economic value, we should not forget its value, as a legume crop, for the soil fertility. Those farmers who are growing green gram know about its value, and they make good money with the crop.

From the project perspective, considering the CBA results, the most important parameters that should be carefully monitored is the yield increase with the project (do the introduced varieties and practices really increase the yield? If yes by how much?) These seem to be the most influential factors for green gram.

Recommendations for green gram

➔ Green gram is a good crop in the paddy cropping system, but not everywhere. This should be considered when encouraging farmers to grow this crop.

- ➔ Green gram is just one source of cash for the farmers, but not the only one. Assessing livelihood improvement cannot be done by analysing the green gram or the paddy alone. The entire farming system, and off-farm revenue and remittances are equally important to assess the farmers' livelihood.
- → The yield is the most sensitive factor for green gram. The success of the project is very much depending on the yield improvement compared to non-project farmers.
- → There is more scope to support stakeholders along the green gram value chain as this crop is not regulated by the State and there are several options for export.
- → The project monitoring should focus on yield increase and prices

4.2 Fishery value chain

In the Gulf of Mottama, fishing is a widespread source of income for the population. A major difficulty for this sector is the gradual reduction of fish stocks in the gulf, largely due to illegal fishing. This is the reason why some fishermen have abandoned their activity, breaking up with an old family tradition. The project has initiated activities that are highly appreciated by the public, and that have a big potential to contribute to improving the fishermen's livelihood.

The project intervention at the policy and governance level is very interesting: this factor (successful control of illegal fishing and expected quick improvement of the natural balance in the GoM) is a key in this project. Interestingly this specific issue is more important than all the others, because any success will not only impact the "project fishermen". It will improve the situation for all the fishermen in the GoM.

About the CBA, it is worthwhile making the following comment: as the CBA measures the difference between the situation with and without the project, this may lead to unrealistic cases. For instance, if the situation without the project is extremely bad, and the situation with the project is just a little better but still bad, the difference between the two options will still be positive, even if both situations have negative CBA results. This calls for careful interpretation!

Recommendations for fishery

- ➔ Pay highest attention to the policy aspect, illegal fishing is the most critical and influential factor
- ➔ Fishing is a seasonal activity, most fishermen have other livelihood relevant activities, with a too strong focus on the value chain approach, this aspect may get lost.
- ➔ For a single fisherman, it is important to catch at least 1 tonne of fish per year, as the profitability of the investment is strongly reduced when the quantity decreases. In project support terms, focus on professional fishing rather than encouraging "too small" fishermen who will not be able to make their activity profitable.
- ➔ For the fish collectors, who play a key role in the value chain, their situation is improving with increasing quality, share of big fish, and increased margin. A close interaction between the fishermen and the collectors is important, and should be strengthened.
- ➔ For the CBA, the project monitoring should focus on the performance of the fishermen and the collectors, the volumes of catch and trade, the quality aspects, and the prices. It is key to capture adequately these parameters to upgrade the CBA over time.

4.3 WASH

The calculations proposed in the WASH section are preliminary and propose a methodology for a close follow up and monitoring of these activities.

Recommendations for WASH

- ➔ Develop a format to calculate unit costs for the different types of water systems. This will provide a basis for comparison.
- → Prepare a standard form for the collection of the important data regarding:
 - The construction of a water system
 - \circ $\;$ The operation of the water system, including water distribution
 - \circ $\;$ Keep track of the different costs involved by source
- → Beyond purely quantitative aspects, the systems should also be compared considering other factors such as the governance of the system, the quality of the maintenance, the management system, gender and equity aspects when assessing access to water and influence on the system operations
- → The quality of the water supplied in the different systems
- ➔ To compare the unit costs of water, it is recommended to search for international reference studies providing similar results (unit costs for different systems) as a basis for a careful assessment.

4.4 Economic analysis

The economic analysis is looking at the impact of the project on the local economy. While the results presented up to this point reflect (more or less) a financial perspective (the profitability of the activities from the point of view of the entrepreneurs), based on actual market prices (so-called financial prices) the economic analysis considers shadow prices for all inputs and outputs, excludes financial transfers, etc. We do not have sufficient information for a complete economic analysis at this stage, but we still suggest some issues that need to be considered for such an analysis.

4.4.1 Economic analysis of the paddy value chain

Paddy production in Myanmar is supported by the State, with specific measures (minimum price, credit facilities, input supply, etc.) that positively impact the profitability of the crop for the farmers. The economic analysis requires to get a full picture of State interventions in the sector, and to calculate the CBAs with the real costs of paddy production to the society. It is likely that the profitability will be reduced if the farmers do not get a minimum price but the prevailing market price, have more financial costs on their credit, or have to pay more for the fertilisers and seeds. These corrections have to be done to assess the economic impact of the project on the paddy value chain.

4.4.2 Economic analysis of the green gram value chain

Green gram is much less in the focus of Myanmar's agricultural policy. There is no minimum price, and no specific support programme. Therefore, it is likely that the green gram value chain as it is assessed in the present report is not too far from a full economic analysis. In the case of green gram, there are State intervention from outside, such as the Indian ban on imports, that significantly influence the market. In early May 2018, the headlines in Myanmar were "Myanmar's bean prices pick up as India lifts import ban" (http://www.xinhuanet.com/english/2018-05/07/c 137160971.htm).

4.4.3 Economic analysis of the fishery value chain

Adding value to the fishery sector, this is what the GoMP aims at. The following measures are likely to contribute to this goal: policy dialogue to reduce, prevent, if possible even eradicate illegal fishery is a powerful measure to increase the value of the GoM in the long term. Illegal fishery is extracting value in a short-term perspective, but this is a threat to the long-term productivity of the ecosystem.

Therefore, in the case of the fishery value chain, there is potentially a major economic impact in the long-term, while there are other measures promoted by the project that are potentially increasing the economic value of the fishery sector in the short-term. These measures include the improved handling of the fish (ice boxes for improved conservation), processing (fish paste), but also improved fishing practices (increasing share of big fish, less wastes).

There is also a State support in the fishery and livestock sector (mainly investment facility). For an economic analysis, the real costs of investments should be considered to assess the economic value of fishery to society.

4.4.4 Economic analysis of WASH sector support

Improving access to drinking and household water has a clear impact on the local economy. This was not considered in the CEA on WASH, because of a lack of reliable data. The benefits that should be looked at are:

- Reduced burden to access water (\rightarrow free time for productive work)
- Reduced costs of water (→ more purchasing power for the villagers)
- Improved health from improved water quality (less diarrhoea, etc.) (→ more free time for productive work)

5 Annexes

5.1 Annex 1 TOR

Objective(s) of the consultancy

The overall objective is to conduct an ex-ante cost benefit analysis (CBA) of the GoMP at the start of phase 2, followed by an ex-post CBA towards the end of phase 2, the second half of 2021. Specific objectives of the CBA are:

- a) To conduct a cost benefit analysis for selected agriculture and fisheries value chains (rice and green gram value chains for farmers and post-harvesting for fisheries) at the farmer's/fisher's level and the Water Sanitation and Hygiene (WASH) initiatives that will be conducted during phase 2 of the project.
- b) To overview both the ex-ante and ex-post analysis for the project, having a more supervisory role after the ex-ante analysis.

The first objective will contribute to compare and identify the most effective farming and post-harvest technologies for rice, green gram and fisheries products at the level of the smallholder farmers/fishers in the Gulf of Mottama and how these interventions affect their income. The main task of the consultant is the exante calculations at the beginning of phase 2 but some time will be available for advisory to the HELVETAS collaborator, who will complete the CBA at the end of phase 2 (second half 2021). HELVETAS Myanmar / Terms of Reference Consultancy contract 3.

3. Expected results of the consultancy

- a) A comprehensive CBA analysis in line with the SDC "How-to Note CBA_CEA"2
- b) An EXCEL spreadsheet allowing later application/modification of assumptions and further sensitivity analysis throughout phase 2 by HELVETAS.
- c) An explicit description on how cost and benefits were derived, the underlaying assumptions and how the attributions of the project have been modelled.
- d) A presentation of the preliminary key results to project staff, HELVETAS YPO and SDC-Yangon.
- e) A draft ex-ante CBA report of max. 15 pages (plus annexes) to be submitted by 08.06.2018, 2018.
- f) Overview the Ex-post CBA analysis and ensure that both studies (ex-ante and ex-post) properly correspond with each other.

4. Main tasks and activities of the consultant

- a) Analyse GoMP project logframe, indicators, Monitoring and Evaluation framework and achievements during phase 1 (the Baseline review report Ko Lwin).
- b) Study the Farmer's and Fisher's income books that have been produced during phase 1 and evaluate how relevant the data are for the CBA analysis and identify shortcomings. One of the M.Sc. Students from YAU at present @HAFL will study the farmer's logbook as part of her thesis (Ms. No No Aung) and these results can be used for the CBA.
- c) Analyse and select, together with project team, the most relevant value chains, including post-harvest options, and WASH options to be included in the CBA.
- d) Design a workable CBA model in discussion with the project team, quantifying the most relevant cost and benefits for the selected VC and WASH initiatives.
- e) Establishment of a result chain to illustrate the attributions.
- f) Calculate the ex-ante CB ratios, including a sensitivity analysis for the financial analysis considering different VC and WASH scenarios.
- g) Provide a three hour "crash course" for project staff how to interpret major results and future use of the CBA model established in the Yangon Office of HELVETAS Myanmar.
- h) Provide recommendations regarding improvements of the M&E framework in order to provide reliable data for future CBA (financial and economic analysis).
- i) Present preliminary findings of the study to the project and SDC (?) at the end of the mission.
- j) Report writing, including analysis, explanations and recommendations.

4. Time Frame of the assignment

The total duration of the CBA assignment is 14 working days (including 2 days travelling) in the period of May 7-June 8, 2018. The mission will consist of preparation (1 day), field mission, including travel (10 days) and report writing/coaching (3 days).

5.2 Annex 2 Glossary of terms used in CBA

The CBA methodology and its application in the context of development projects is explained in details in the e-learning tool of SDC that can be found under <u>http://deza-pcmi-lernbuch-3.prod2.lernetz.ch/module-6-en/5-glossary#Ti365</u>

The most important terms are explained here:

NPV = Net Present Value

The sum of all discounted costs and benefits is called the net present value (NPV). This sum reflects how much the project will earn. NPV is usually calculated by adding the present value of future cash flows, residual values, and interest less investment costs, operational costs and future expenses. NPV is dependent on the value of the discount rate used to calculate these costs since the discount rate is used to calculate values over time (see also discounted costs, discounted benefits). The NPV method is used for evaluating the desirability of investments or projects.

The minimum condition for accepting a project is a positive NPV.

IRR = Internal Rate of Return

IRR is the rate (similar to an internal interest rate) that is generated by a project or an enterprise. It is an indicator of the profitability of the project / enterprise. If the IRR is equal to the discount rate then the discounted costs equal the discounted benefits, that is it would just break-even at that particular rate (see also discounting). The IRR is the discount rate at which the NPV (see NPV) for a project equals zero. This rate means that the present value of the cash inflows for the project would equal the present value of its outflows.

The condition for a project to be acceptable is that the IRR exceeds the discount rate.

Discount rate

The discount rate refers to the interest rate used in discounted cash flow (DCF) analysis to determine the present value of future cash flows. The discount rate in DCF analysis takes into account not just the time value of money but also the risk or uncertainty of future cash flows; the greater the uncertainty of future cash flows the higher the discount rate. High discount rates tend to penalise long-term projects, such as environmental protection, and to favour short-term projects and projects with quick-benefits.

In the case of Tanzania, the discount rate considered is 12% based on information from the Central Bank

BCR Benefit Cost Ratio

Ratio of (discounted) costs to benefits: total discounted benefits divided by total discounted costs.

The condition for a project to be acceptable is a ratio >1

CBA 2 paddy produ	cers										
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	53 400 000	169 656 000	326 000 000	418 000 000	510 000 000	552 000 000	552 000 000	552 000 000	552 000 000	552 000 000	552 000 000
additional working capital	53 400 000	96 600 000	50 000 000	50 000 000	50 000 000	•	•	•	•	•	•
additional production costs		64 080 000	240 000 000	320 000 000	400 000 000	480 000 000	480 000 000	480 000 000	480 000 000	480 000 000	480 000 000
financial costs		8 976 000	36 000 000	48 000 000	60 000 000	72 000 000	72 000 000	72 000 000	72 000 000	72 000 000	72 000 000
Total benefits		115 143 750	431 250 000	575 000 000	718 750 000	862 500 000	862 500 000	862 500 000	862 500 000	862 500 000	1 162 500 000
additional paddy sales		115 143 750	431 250 000	575 000 000	718 750 000	862 500 000	862 500 000	862 500 000	862 500 000	862 500 000	862 500 000
additional value of paddy			•	•	•			•		•	
recovery working capital											300 000 000
Cash flow	-53 400 000	-54 512 250	105 250 000	157 000 000	208 750 000	310 500 000	310 500 000	310 500 000	310 500 000	310 500 000	610 500 000
NPV	1 283 870 215										
IRR	98.24%										
BCR	1.46										

5.3 Annex 3 CBA2 Paddy value chain

Aggregated CBA for	paddy val	ue chain									
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	161 670 000	261 861 000	601 724 000	642 424 000	639 654 000	668 964 000	660 000 000	660 000 000	660 000 000	552 000 000	552 000 000
additional working capital	53 400 000	96 600 000	50 000 000	50 000 000	50 000 000				ı	•	
additional production costs		64 080 000	240 000 000	320 000 000	400 000 000	480 000 000	480 000 000	480 000 000	480 000 000	480 000 000	480 000 000
financial costs		8 976 000	36 000 000	48 000 000	60 000 000	72 000 000	72 000 000	72 000 000	72 000 000	72 000 000	72 000 000
project contribution											
phase 1	108 270 000	92 205 000	•								
phase 2 output 1.1			218 700 000	167 400 000	66 150 000	62 100 000					
phase 2 output 3			57 024 000	57 024 000	63 504 000	54 864 000					
phase 3							108 000 000	108 000 000	108 000 000		
Total benefits		115 143 750	431 250 000	575 000 000	718 750 000	862 500 000	862 500 000	862 500 000	862 500 000	862 500 000	1 162 500 000
additional paddy sales		115 143 750	431 250 000	575 000 000	718 750 000	862 500 000	862 500 000	862 500 000	862 500 000	862 500 000	862 500 000
additional value of paddy		•	•	•		•	•		•	•	•
recovery working capital											300 000 000
Cash flow	-161 670 000	-146 717 250	-170 474 000	-67 424 000	79 096 000	193 536 000	202 500 000	202 500 000	202 500 000	310 500 000	610 500 000
NPV	367 345 414										
IRR	20.21%										
BCR	1.10										

5.4 Annex 4

CBA3 Paddy value chain with administrated project funds

Aggregated CBA 2 g	Ireen gram	producers									
	C	2100	2018	0100	UCUC	1004	0000	000	KCUC	2025	3000
Total costs	26 700 000	67 956 000	181 000 000	233 000 000	285 000 000	312 000 000	312 000 000	312 000 000	312 000 000	312 000 000	312 000 000
additional working capital	26 700 000	48 300 000	25 000 000	25 000 000	25 000 000						
additional production costs		10 680 000	120 000 000	160 000 000	200 000 000	240 000 000	240 000 000	240 000 000	240 000 000	240 000 000	240 000 000
financial costs		8 976 000	36 000 000	48 000 000	60 000 000	72 000 000	72 000 000	72 000 000	72 000 000	72 000 000	72 000 000
Total hanafite		040 444 040	207 000 000	306 120 000	405 150 000	504 180 000	50/ 180 000	501 180 000	504 180 000	504 180 000	744 180 000
additional sales		26 433 000	297 000 000	396 000 000	495 000 000	594 000 000	594 000 000	594 000 000	594 000 000	594 000 000	594 000 000
additional value of green gram		8 010	000 06	120 000	150 000	180 000	180 000	180 000	180 000	180 000	180 000
recovery working capital											150 000 000
Cash flow	-26 700 000	-41 514 990	116 090 000	163 120 000	210 150 000	282 180 000	282 180 000	282 180 000	282 180 000	282 180 000	432 180 000
NPV	1 194 823 804										
IRR	140.73%										
BCR	1.78										

5.5 Annex 5 CBA2 Green gram value chain aggregated

Aggregated CBA for	green gran	n value cha	ain with pro	oject costs							
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	53 767 500	91 007 250	235 675 000	274 850 000	301 537 500	327 525 000	339 000 000	339 000 000	339 000 000	312 000 000	312 000 000
additional working capital	26 700 000	48 300 000	25 000 000	25 000 000	25 000 000	•	•		ı	ı	
additional production costs		10 680 000	120 000 000	160 000 000	200 000 000	240 000 000	240 000 000	240 000 000	240 000 000	240 000 000	240 000 000
financial costs		8 976 000	36 000 000	48 000 000	60 000 000	72 000 000	72 000 000	72 000 000	72 000 000	72 000 000	72 000 000
project contribution											
phase 1	27 067 500	23 051 250	•								
phase 2 output 1.1			54 675 000	41 850 000	16 537 500	15 525 000					
phase 3							27 000 000	27 000 000	27 000 000		
Total hanafite		010 111 DE	207 000 000	206 120 000	405 150 000	504 100 000	504 180 000	504 180 000	504 180 000	504 180 000	744 480 000
additional cales		26 433 000	201 000 000 207 000 000	306 000 000	495 000 000				504 000 000	201 000 000	
additional value of areen aram		8 010	90 000 90 000	120 000	150 000	180 000	180 000	180 000	180 000	180 000	180 000
recovery working capital											150 000 000
Cash flow	-53 767 500	-64 566 240	61 415 000	121 270 000	193 612 500	266 655 000	255 180 000	255 180 000	255 180 000	282 180 000	432 180 000
VON	1 007 545 245										
IRR	79.61%										
BCR	1.58										

5.6 Annex 6

CBA3 Green gram with administrated costs

5.7 Annex 7 CBA1, CBA2 Fisherman without and with project

CBA 1 fishermen (w	vithout p	oroject)									
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	1 835 000	1 257 000	1 262 000	1 590 333	1 595 333	1 590 333	1 682 000	1 517 000	1 262 000	1 257 000	1 262 000
working capital	150 000										
fishing boat	420 000						420 000				
engine	260 000							260 000			
net	1 000 000			333 333	333 333	333 333					
box (polystyrene)	5 000		5 000		5 000		5 000		5 000		5 000
ice		32 000	32 000	32 000	32 000	32 000	32 000	32 000	32 000	32 000	32 000
fuel		225 000	225 000	225 000	225 000	225 000	225 000	225 000	225 000	225 000	225 000
labour		800 000	800 000	800 000	800 000	800 000	800 000	800 000	800 000	800 000	800 000
financial costs		200 000	200 000	200 000	200 000	200 000	200 000	200 000	200 000	200 000	200 000
Total benefits		2070000	1966500	1868175	1774766.25	1686027.94	1601726.54	1521640.21	1445558.2	1373280.29	1454616.28
selling high value fish		450 000	427 500	406 125	385 819	366 528	348 201	330 791	314 252	298 539	283 612
selling low value fish		1 620 000	1 539 000	1 462 050	1 388 948	1 319 500	1 253 525	1 190 849	1 131 306	1 074 741	1 021 004
working capital recovery											150 000
Cash flow	-1 835 000	813 000	704 500	277 842	179 433	95 695	-80 273	4 640	183 558	116 280	192 616
NPV	43 319										
IRR	10.99%										
BCR	1.00										

CBA 2 fishermer	n (with pr	oject)									
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	2 230 000	1 481 250	1 481 250	1 814 583	1 934 583	1 814 583	2 514 583	2 074 583	1 934 583	1 814 583	1 814 583
working capital	150 000										
fishing boat	700 000						700 000				
engine	260 000							260 000			
net	1 000 000			333 333	333 333	333 333	333 333	333 333	333 333	333 333	333 333
box (polystyrene)	120 000				120 000				120 000		
ice		160 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000	160 000
fuel		281 250	281 250	281 250	281 250	281 250	281 250	281 250	281 250	281 250	281 250
labour		800 000	800 000	800 000	800 000	800 000	800 000	800 000	800 000	800 000	800 000
financial costs		240 000	240 000	240 000	240 000	240 000	240 000	240 000	240 000	240 000	240 000
Total benefits		2 358 000	2 392 560	2 431 267	2 474 619	2 523 174	2 577 554	2 638 461	2 706 676	2 783 077	3 018 647
selling high value fish		495 000	554 400	620 928	695 439	778 892	872 359	977 042	1 094 287	1 225 602	1 372 674
selling low value fish		1 863 000	1 838 160	1 810 339	1 779 180	1 744 281	1 705 195	1 661 419	1 612 389	1 557 476	1 495 973
working capital recovery											150 000
Cash flow	-2 230 000	876 750	911 310	616 684	540 036	708 590	62 971	563 878	772 093	968 494	1 204 063
NPV	2 152 394										
IRR	30.36%										
BCR	1.16										
additional costs	395 000	224 250	219 250	224 250	339 250	224 250	832 583	557 583	672 583	557 583	552 583
additional benefits		288 000	426 060	563 092	699 853	837 146	975 828	1 116 821	1 261 118	1 409 797	1 564 030
Net cash flow increase	-395 000	63 750	206 810	338 842	360 603	612 896	143 245	559 237	588 535	852 214	1 011 447
NPV	2 109 075										
IRR	58.57%										
BCR	1.74										

5.8 Annex 8 CBA3, CBA4 Fish collector without and with project

CBA 3 average v	village fish	collector (v	without pro	ject)							
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	10 000 000	25 240 000	23 998 000	22 818 100	21 697 195	20 632 335	19 620 718	18 659 683	17 746 698	16 879 364	16 055 395
working capital	10 000 000										
buying high value fish		5 400 000	5 130 000	4 873 500	4 629 825	4 398 334	4 178 417	3 969 496	3 771 021	3 582 470	3 403 347
buying low value fish		19 440 000	18 468 000	17 544 600	16 667 370	15 834 002	15 042 301	14 290 186	13 575 677	12 896 893	12 252 049
buying ice		0	0	0	0	0	0	0	0	0	0
storage & marketing		400 000	400 000	400 000	400 000	400 000	400 000	400 000	400 000	400 000	400 000
financial costs		0	0	0	0	0	0	0	0	0	0
Total benefits		29 040 000	27 588 000	26 208 600	24 898 170	23 653 262	22 470 598	21 347 069	20 279 715	19 265 729	28 302 443
selling high value fish		6 360 000	6 042 000	5 739 900	5 452 905	5 180 260	4 921 247	4 675 184	4 441 425	4 219 354	4 008 386
selling low value fish		22 680 000	21 546 000	20 468 700	19 445 265	18 473 002	17 549 352	16 671 884	15 838 290	15 046 375	14 294 057
selling ice		0	0	0	0	0	0	0	0	0	0
working capital recovery											10 000 000
Cash flow	-10 000 000	3 800 000	3 590 000	3 390 500	3 200 975	3 020 926	2 849 880	2 687 386	2 533 017	2 386 366	12 247 048
NPV	8 212 347										
IRR	30.33%										
BCR	1.06										

CBA 4 average v	illage fish	collector	(with pro	ject)							
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	15 000 000	29 896 000	30 068 800	30 250 240	30 440 752	30 640 790	30 850 829	31 071 371	31 302 939	31 546 086	31 801 390
working capital	15 000 000										
buying high value fish		5 940 000	6 237 000	6 548 850	6 876 293	7 220 107	7 581 112	7 960 168	8 358 177	8 776 085	9 214 890
buying low value fish		22 356 000	22 231 800	22 101 390	21 964 460	21 820 682	21 669 717	21 511 202	21 344 763	21 170 001	20 986 501
buying ice		1 200 000	1 200 000	1 200 000	1 200 000	1 200 000	1 200 000	1 200 000	1 200 000	1 200 000	1 200 000
storage & marketing		400 000	400 000	400 000	400 000	400 000	400 000	400 000	400 000	400 000	400 000
financial costs		0	0	0	0	0	0	0	0	0	0
Total benefits		35 839 200	36 044 160	36 259 368	36 485 336	36 722 603	36 971 733	37 233 320	37 507 986	37 796 385	53 099 205
selling high value fish		7 123 200	7 479 360	7 853 328	8 245 994	8 658 294	9 091 209	9 545 769	10 023 058	10 524 211	11 050 421
selling low value fish		27 216 000	27 064 800	26 906 040	26 739 342	26 564 309	26 380 525	26 187 551	25 984 928	25 772 175	25 548 783
selling ice		1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000	1 500 000
working capital recovery											15 000 000
Cash flow	-15 000 000	5 943 200	5 975 360	6 009 128	6 044 584	6 081 814	6 120 904	6 161 950	6 205 047	6 250 299	21 297 814
NPV	28 134 642										
IRR	40.12%										
BCR	1.14										
additional costs	5 000 000	4 656 000	6 070 800	7 432 140	8 743 557	10 008 454	11 230 111	12 411 688	13 556 241	14 666 723	15 745 995
additional benefits		6 799 200	8 456 160	10 050 768	11 587 166	13 069 342	14 501 135	15 886 252	17 228 271	18 530 656	24 796 762
Net cash flow increase	-5 000 000	2 143 200	2 385 360	2 618 628	2 843 609	3 060 887	3 271 024	3 474 564	3 672 030	3 863 934	9 050 767
NPV	15 200 528										
IRR	51.10%										
BCR	1.24										

5.9 Annex 9 Fishery

CBA5 Fishery with administrated funds

CBA6 Fishery with administrated and management funds

Aggregated CBA for	r fishery wit	h administra	ated project	t costs							
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	1 838 126 250	1 110 636 750	1 527 551 000	2 515 556 820	3 625 593 325	4 372 402 853	8 194 326 207	6 888 440 790	7 772 034 219	7 475 202 875	7 831 948 242
additional costs for fishing	395 000 000	224 250 000	342 100 000	605 475 000	1 080 412 500	941 850 000	3 751 287 500	2 341 850 000	2 824 850 000	2 341 850 000	2 320 850 000
additional costs for collection	415 000 000	386 448 000	692 080 000	1 526 438 820	2 277 300 325	3 197 434 853	4 240 538 707	4 344 090 790	4 744 684 219	5 133 352 875	5 511 098 242
project costs											
outcome 1 phase 1	881 651 250	411 513 750	43 875 000	0	0	0	0	0	0	0	0
outcome 3 phase 1	146 475 000	88 425 000	0	0	0	0	0	0	0	0	0
output 1.1 phase 2	0	0	273 375 000	209 250 000	82 687 500	77 625 000	0	0	0	0	0
activity 2.2.2 phase 2	0	0	35 950 500	53 500 500	52 150 500	38 650 500	0	0	0	0	0
activity 2.2.3 phase 2	0	0	33 250 500	13 972 500	13 972 500	13 972 500	0	0	0	0	0
activity 3.1.2	0	0	28 350 000	36 450 000	36 450 000	36 450 000	0	0	0	0	0
output 3.2	0	0	78 570 000	70 470 000	82 620 000	66 420 000	0	0	0	0	0
fishery phase 3	0	0	0	0	0	0	202 500 000	202 500 000	202 500 000	0	0
Total banafite		852 333 600	1 356 888 000	2 736 304 074	4 406 715 578	6 652 122 867	0 173 874 264	10 250 835 064	11 326 500 610	12 /06 877 /30	15 247 704 314
additional honofite for fiching		288 000 000	511 272 000	1 009 020 700	1 990 602 129	2 999 152 452	4 009 477 020	4 600 647 022	E 206 605 779	5 001 147 000	6 569 007 607
additional banafits for collection		200 000 000	945 616 000	1 620 275 194	2 607 112 440	2 762 070 415	4 050 477 025 5 075 207 225	4 090 047 023 5 560 199 041	6 020 904 941	6 495 720 611	9 679 966 619
auditional perients for collection		304 333 000	045 010 000	1 030 275 104	2 007 112 440	3703 970 413	5 015 551 255	5 500 100 041	0 029 054 041	0403729011	0 0/0 000 010
Cash flow	-1 838 126 250	-258 303 150	-170 663 000	220 748 154	871 122 253	2 279 720 014	979 548 057	3 362 394 274	3 554 556 400	4 931 674 564	7 415 846 073
NPV	8 849 612 425										
IRR	37.97%										
BCR	1.30										

Aggregated CBA for	fishery with	h administra	ated project	costs and	manageme	nt costs (30	%)				
	0	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Total costs	2 405 126 250	1 394 136 750	1 811 051 000	2 799 056 820	3 909 093 325	4 655 902 853	8 477 826 207	7 171 940 790	8 055 534 219	7 475 202 875	7 831 948 242
additional costs for fishing	395 000 000	224 250 000	342 100 000	605 475 000	1 080 412 500	941 850 000	3 751 287 500	2 341 850 000	2 824 850 000	2 341 850 000	2 320 850 000
additional costs for collection	415 000 000	386 448 000	692 080 000	1 526 438 820	2 277 300 325	3 197 434 853	4 240 538 707	4 344 090 790	4 744 684 219	5 133 352 875	5 511 098 242
project costs											
outcome 1 phase 1	881 651 250	411 513 750	43 875 000	0	0	0	0	0	0	0	0
outcome 3 phase 1	146 475 000	88 425 000	0	0	0	0	0	0	0	0	0
output 1.1 phase 2	0	0	273 375 000	209 250 000	82 687 500	77 625 000	0	0	0	0	0
activity 2.2.2 phase 2	0	0	35 950 500	53 500 500	52 150 500	38 650 500	0	0	0	0	0
activity 2.2.3 phase 2	0	0	33 250 500	13 972 500	13 972 500	13 972 500	0	0	0	0	0
activity 3.1.2	0	0	28 350 000	36 450 000	36 450 000	36 450 000	0	0	0	0	0
output 3.2	0	0	78 570 000	70 470 000	82 620 000	66 420 000	0	0	0	0	0
fishery phase 3	0	0	0	0	0	0	202 500 000	202 500 000	202 500 000	0	0
project management costs	567 000 000	283 500 000	283 500 000	283 500 000	283 500 000	283 500 000	283 500 000	283 500 000	283 500 000		
Total benefits		852 333 600	1 356 888 000	2 736 304 974	4 496 715 578	6 652 122 867	9 173 874 264	10 250 835 064	11 326 590 619	12 406 877 439	15 247 794 314
additional benefits for fishing		288 000 000	511 272 000	1 098 029 790	1 889 603 138	2 888 152 452	4 098 477 029	4 690 647 023	5 296 695 778	5 921 147 828	6 568 927 697
additional benefits for collection		564 333 600	845 616 000	1 638 275 184	2 607 112 440	3 763 970 415	5 075 397 235	5 560 188 041	6 029 894 841	6 485 729 611	8 678 866 618
Cash flow	-2 405 126 250	-541 803 150	-454 163 000	-62 751 846	587 622 253	1 996 220 014	696 048 057	3 078 894 274	3 271 056 400	4 931 674 564	7 415 846 073
NPV	6 770 160 848										
IRR	27.92%										
BCR	1.22										

CEA2 for water supply systems	aggregated,	including	administ	rated pro	<mark>ject costs</mark>						
this sheet assumes that all the water systesm ar	re similar to CEA1,	the numbers c	ome from "pr	oject figures"							
									1000		
	0	2018	2019	2020	2021	2022	2023	2024	2025	2026	
Total costs	32 000 000	103 000 000	234 800 000	272 700 000	115 500 000	102 000 000	102 000 000	102 000 000	102 000 000	102 000 000	
Project contribution to construction	28 800 000	57 600 000	72 000 000	86 400 000	0	0	0	0	0	0	
Village contribution to construction	3 200 000	6 400 000	8 000 000	000 009 6	0	0	0	0	0	0	
Maintenance		8 000 000	24 000 000	44 000 000	68 000 000	68 000 000	68 000 000	68 000 000	68 000 000	68 000 000	
Management		4 000 000	12 000 000	22 000 000	34 000 000	34 000 000	34 000 000	34 000 000	34 000 000	34 000 000	
Administrated funds											
Water assessment (WASH technical)		27 000 000									
Awareness (including waste management)			91 800 000	83 700 000	13 500 000						
Additional contribution water systems			27 000 000	27 000 000							
Outputs (total available water in m3)		11 024	33 072	60 632	93 704	93 704	93 704	93 704	93 704	93 704	666 952
Drinking water supplied (m3)		009 6	28 800	52 800	81 600	81 600	81 600	81 600	81 600	81 600	580 800
Residual water supplied (m3)		1 424	4 272	7 832	12 104	12 104	12 104	12 104	12 104	12 104	86 152
Net present value	867 551 704										
KEY CEA INDICATORS											
Cost per m3 water supplied (MMK/m3)	1 301										
Cost per household (5 months) (MMK/hh)	7 088										
Without administrated funds											
Cost per m3 water supplied (MMK/m3)	978										
Cost per household (5 months) (MMK/hh)	5 330										

5.10 Annex 10 WASH Cost effectiveness analysis